CASIO. FX-82ZA PLUS

TECHNICAL MATHS

LIKE US ON VISIT OUR		
VISIT OUR		
FOR		
CASIO		
CALCULATORS	Www.casio.jamesralphedu.co.za sean me for scientific	
SOUTH AFRICA		calculator worksheets 8 how-to-videcs

1. Computational - normal scientific calculations
2. Statistics - data handling \& regression
3. Table - graph work \& functions

How to CLEAR (Initialise) your calculator:
SHHTT 9 B \triangle AC
This returns the MODE \& SETUP to the initial default settings \& clears the MEMORY.

MODE 1: Computational

A.COMMON FRACTIONS

Example:

$$
\begin{aligned}
& \frac{9}{5}+\cdot \frac{1}{4} \\
& =\frac{41}{20} \text { Improper fraction } \\
& =2,05 \text { Decimal } \\
& =2 \frac{1}{20} \text { Mixed number }
\end{aligned}
$$

1. $\frac{8}{3} \times \frac{7}{2}$
$=$. \qquad OR \qquad OR \qquad =. \qquad OR \qquad OR

B. MIXED NUMBERS

1. $2 \frac{3}{4} \times 4 \frac{5}{12}$
$=$ \qquad OR \qquad OR \qquad
2. $-1 \frac{1}{2}-3 \frac{1}{4}$
$=$ \qquad OR \qquad OR \qquad
C.EXPONENTS
3. $\left(4^{2}\right)^{5}=$ \qquad 2. $2^{6}+3^{4}=$ \qquad

Calculator Keys: $\sqrt{-}$ SHIFT $\sqrt{-}$ SHIFT x
2. $\sqrt[3]{729}-\sqrt[3]{19683}=$ \qquad
3. $\sqrt[7]{78125}-\sqrt[6]{1000}=$ \qquad

Casio Scientific Technology Tip

ONLY use ON when switching the scientific calculator on.
To clear your screen, rather use $A C$ this saves your calculator's temporary memory (see the $\boldsymbol{\Delta}$ in the top right corner of the screen)
Useto review previous calculations.

How to set your calculator to round off to 2 decimal places

How to clear your calculator from rounding off to 2 decimal places

SCIENTIFIC NOTATION

A. CONVERTING FROM SCIENTIFIC NOTATION TO A WHOLE NUMBER OR DECIMAL

Convert the following to ordinary notation:

1. $3 \times 10^{4}=$ \qquad
2. $4,69 \times 10^{-5}=$ \qquad

B. CONVERTING TO SCIENTIFIC NOTATION

Convert the following numbers to scientific notation with four significant digits:

1. $1267=$ \qquad ...
2. $148501000=$ \qquad

C. ENGINEERING KEY

Transforms a displayed value to engineering notation
(x10 to the power of multiples of 3)
ENG shifts the decimal point to the right.
SHIFT ENG shifts the decimal point to the left.

POLAR \& RECTANGULAR CONVERSIONS

| Pol converts rectangular coordinates to polar coordinates. |
| :--- | :--- | :--- |
| Pol $(x, y)=(r, \theta)$ |

CIRCLES, ANGLES \& ANGULAR MOVEMENT

Angles

-998
A. Converting from Decimal Degree notation to Degree-Minute-Second (D-M-S) notation

Express 236,345 in D-M-S notation:

B. Converting from D-M-S notation to Decimal Degree notation

Express $75^{\circ} 23^{\prime} 54^{\prime \prime}$ in decimal degree notation:

NOTE:

- A radian is a measure of the size of an angle and is equal to approximately $57,3^{\circ}$. It is equivalent to the angle subtended at the centre of a circle by an arc equal to the length of the radius.
$0^{\circ}=0 \mathrm{rad} ; 90^{\circ}=\frac{\pi}{2} \mathrm{rad} ; 180^{\circ}=\pi \mathrm{rad} ; 270^{\circ}=\frac{2 \pi}{3} \mathrm{rad}$ and $360^{\circ}=2 \pi \mathrm{rad}$.
- A gradian is $\frac{1}{400}$ th of a full circle. It is also known as a 'grade' or a 'grad'. $0^{\circ}=0 \mathrm{grad} ; 90^{\circ}=100 \mathrm{grad} ; 180^{\circ}=200 \mathrm{grad} ; 270^{\circ}=300 \mathrm{grad} ; 360^{\circ}=400 \mathrm{grad}$.

		$\begin{aligned} & 1: 0 \\ & 3: 9 \end{aligned}$	$2:^{r}$

C. Converting from Radians to Degrees

1) Convert $\frac{5 \pi}{4}$ to degrees

2) Convert $1,5 \mathrm{rad}$ to degrees

D. Converting from Degrees to Radians

MODE SETUP	4		Math
Convert 120° to radians 1 2 0 SHIFT Ans 1 $=$	120°		

Convert:
a) $47,7^{\circ}$ to D-M-S notation
b) $23^{\circ} 12^{\prime}$ to Decimal Degree notation
$47^{\circ} 42^{\prime} 0^{\prime \prime}$
c) $\frac{\pi}{7}$ to Decimal Degree notation
d) 2 rad to Decimal Degree notation
e) $71,72^{\circ}$ to Radians

23, ${ }^{\circ}$
25,71428571 ${ }^{\circ}$
$114,591559^{\circ}$
1,25175014 rad

PRIME FACTORS

Find the prime factors of 458631

 $3^{2} \times 131 \times 369$
TRIGONOMETRY

A. FINDING THE VALUE OF TRIG IDENTITIES

Find the value of:

1. $\cos 30^{\circ}=$ \qquad
2. $\frac{\sin 315^{\circ} \cdot \cos 150^{\circ}}{\tan 60^{\circ} \cdot \cos 300^{\circ}}=$ \qquad 0

B. FINDING TRIG ANGLES

Example:

```
sin}0=\frac{\sqrt{}{3}}{2
    0=60}\mp@subsup{}{}{\circ
```


Key Sequence:

MEMORIES

A)	$\frac{m a n t}{}$	$\frac{c}{\text { hyp }}$	$\sin ^{-10} \sin ^{2}$	$\begin{gathered} \cos ^{1} \mathrm{E} \\ \cos \end{gathered}$	$\tan ^{\tan }$
งо	-	\%	, x		m- M
RCL	ENG)	S¢0	M+

To assign the result of $3+5$ to variable A	
To multiply the contents of variable A by 10	(11PHA $\Theta \times 100$
To recall the contents of variable A	(CC) Θ

On the calculator, financial maths calculations are done as a continuous calculation. If you use the memory keys, you do not have to key in the same numbers repeatedly. This helps save time and prevent confusion.

- The Memory Keys save time - less calculator keys are pressed.
- The Memory Keys do not have to be cleared to be used again. When saving a new value, it overwrites the existing value.

MODE 3: Table

A.GENERATE TABLES TO SKETCH GRAPHS

1. $y=2 x+3$
$-1 \leq x \leq 3$

Key Sequence:

- Input $f(x)$ formula \boldsymbol{E}
to input the variable x :
(ALPHA \square
- $g(x)=\boldsymbol{Z}$
- Set boundaries for your table:

Start? (-) 1 O
End? 3 B
Step? 1 O

- And the co-ordinates to plot are:
$(-1 ; 1)(0 ; 3)(1 ; 5)(2 ; 7)(3 ; 9)$

On screen:

$$
f(x)=2 x+3
$$

Remember: $A C$ returns you to the formula

2. Find the points of intersection of the straight line $\mathrm{f}(x)=x-3$ and the parabola $\mathrm{g}(x)=x^{2}-x-6$ when $x \varepsilon[-3 ; 4]$

Key Sequence: - Input $\mathrm{f}(x)$ formula - Input $\mathrm{g}(x)$ formula - Set boundaries for the table: Start? $(-3$ End? \square Step? 1 \square	On screen: $\begin{aligned} & f(x)=x-3 \\ & g(x)=x^{2}-x-6 \end{aligned}$
Point of Intersection (-1; 4)	
Point of Intersection (3;0)	

* ZOOM IN * and find the turning point of $g(x)$

3. Compare:
$y=\sin x$ and $y=\cos x$
$x \in\left[0^{\circ} ; 360^{\circ}\right]$

Key Sequence:

- Input $f(x)$ formula Ξ
- Input $g(x)$ formula
- Set boundaries for your table:

Start 20
E Ehd 3 6 0

You need to carefully select the STEPS (or INTERVALS) for your graph.
Consider the equations as a guideline. Step? 0 O

On screen:

$f(X)=\sin (\dot{x}) \quad g(X)=\cos \left(x^{\prime}\right)$

	F(\%) $\begin{aligned} & \text { a } \\ & 1 \\ & 1 \\ & 0\end{aligned}$	

B.SOLVING EQUATIONS IN TABLE MODE

Quadratic equation

$$
x^{2}-5 x+6=0
$$

Generate a TABLE for the equation \& read off the x value where $\mathrm{f}(x)=0$

Key Sequence:

- Input $\mathrm{f}(x)$ equation $\boldsymbol{\Xi}$ to input the variable x :
ALIPHA $)$
- $g(x)=\square$
- Set boundaries for your table:
Start? $\square 6 \boxed{ }$
End? 6 回
Step? 1 O
$f(x)=0$ at $x=2$ or $x=3$
On screen:

$$
f(X)=x^{2}-5 X+6
$$

DOMAIN: Negative \& positive values of the constant STEPS: Reciprocal of the co-efficient of the highest power of \mathbf{x}

C.FINANCIAL MATHS IN TABLE MODE

R1 000 is invested at a compound interest rate of $\mathbf{1 0 \%}$ per annum.
Calculate the value of the investment after:
i. 1 year
ii. 2 years
iii. 3 years
iv. 4 years It is useful to do this in TABLE mode because n is changing.

Given:

$\mathrm{P}=1000$	$i=10 \%=\frac{10}{100}=0,1$	$n=\boldsymbol{x}$	$\mathrm{A}=?$
$\mathbf{A}=\mathbf{1 0 0 0}(\mathbf{1 + 0 , 1})^{n}$			

Key Sequence:

- Input $f(x)$ formula Ξ
- $g(x)=\square$
- Set boundaries for your table:

Start? 1 O
End? 4 B
Step? 1 O
i. 1 year; $\mathrm{A}=\mathrm{R} 1$ 100,00
ii. 2 years; $A=R 1210,00$
iii. 3 years; $\mathrm{A}=\mathrm{R} 1331,00$
iv. 4 years; $A=R 1464,10$

On screen:
 $f(X)=1000(1+.1)$

Check out our website www. casio.jamesralphedu.co.za for more calculator educational resources

DISTRIBUTOR OF CASIO PRODUCTS IN SOUTHERN AFRICA

