

LIKE US ON



VISIT OUR WEBSITE FOR RESOURCES



CASIO CALCULATORS SOUTH AFRICA

www.casio.jamesralphedu.co.za

# MODE 7: TABLE





f(X)=

3

🖸 Math

# A.GENERATE TABLES TO SKETCH GRAPHS

1. y = 2x + 3

 $-1 \le x \le 3$ 









\* ZOOM IN \* and find the turning point of g(x)







## **B.SOLVING EQUATIONS IN TABLE MODE**

Quadratic equation

 $x^2 - 5x + 6 = 0$ 

Generate a TABLE for the equation & read off the *x* value where f(x) = 0



DOMAIN: Negative & positive values of the constant STEPS: Reciprocal / Inverse of the co-efficient of the highest power of x



### STATISTICS

"The practice of collecting and analysing numerical data in large quantities" Wikipedia

# **MODE 3: Statistics**



- 1. Single variable / Data handling
- 2. Linear regression
- 3. Quadratic regression
- 4. Logarithmic regression
- 5. Exponential regression
- 6. AB exponential regression
- 7. Power regression
- 8. Inverse regression

# 1. SINGLE VARIABLE DATA HANDLING 1:1-VAR A.<u>Ungrouped Data</u>

The following data set represents the March rainfall figures (in mls) for the past 12 years for a South African town:

77 75 68 81 110 90 81 42 68 81 95 72

NOTE: some of the values have been repeated - It is useful to have the frequency table on



Using your calculator find:

### **MEASURES OF CENTRAL TENDENCY / AVERAGES**

- 1. MEAN: sum of values divided by the number of values
- 2. MODE: value which occurs most often
- 3. MEDIAN: the central number of a data set

#### **MEASURE OF DISPERSION / SPREAD AROUND THE AVERAGE**

- 4. **RANGE**: highest value *minus* lowest value
- 5. **QUARTILES:** measure the spread of values above and below the mean by dividing the distribution into four groups.
- 6. STANDARD DEVIATION: measure of dispersion around the mean
- 7. VARIANCE: standard deviation squared

| Solution:                                                                                                                                                                                                             | Key Sequence:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Set your calculator to Stats mode for Univariate data                                                                                                                                                                 | MODE 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Enter the data into the table:<br>Input all the <i>x</i> -values first  Use the arrows to move the cursor to the top of the <i>y</i> - column. Input <i>y</i> -values  Input <i>y</i> -values  Input <i>y</i> -values | 77<br>5<br>68<br>81<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>90<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81 |
| Clear the screen - ready for the <b>Single variable sub menu</b><br>1:Type 2:Data<br>3:Sum 4:Var<br>5:Distr 6:MinMax                                                                                                  | AC SHIFT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Breakdown of Single variable sub menu

| Key       | Menu Item                           | Explanation                                                                                                                   |  |
|-----------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 1: Type   | Stats menu                          | Change statistical calculation type                                                                                           |  |
| 2: Data   |                                     | Displays inputted data                                                                                                        |  |
| 3: Sum    | 1: X×2 2: X×                        | <ol> <li>Sum of squares</li> <li>Sum</li> </ol>                                                                               |  |
| 4: Var    | 1:n 2:코<br>3:0x 4:sx                | <ol> <li>Number of samples</li> <li>Mean</li> <li>Population standard deviation</li> <li>Sample standard deviation</li> </ol> |  |
| 5: Distr  |                                     | Perform normal distribution calculations                                                                                      |  |
| 6: MinMax | 1:minX 2:maxX<br>3:Q1 4:med<br>5:Q3 | <ol> <li>Minimum value</li> <li>Maximum value</li> <li>First quartile</li> <li>Median</li> <li>Third quartile</li> </ol>      |  |



Using the five-number summary (maximum, minimum, median & quartiles) you can draw a box and whisker diagram.

6. STANDARD DEVIATION (POPULATION) AC SHIFT 1 4 3 = 0X =

DETERMINE THE PERCENTAGE OF THE RAINFALL FIGURES WITHIN ONE STANDARD DEVIATION FROM THE MEAN.



### B. Grouped Data

When data is grouped it is first necessary to find a single value to represent each class. This single value is the <u>midpoint of the interval</u>.

Suppose you asked a group of men to count the number of items in their pockets.

#### **NOTICE:**

• The data items in the table below are groups, so first you need to find the **midpoints** of the groups.

Notice that the numbers 0, 1, 2, 3 and 4 are included in the group 0 - 4. The middle score is thus 2.

a) First calculate the midpoint X of each of the groups

| No of items | Frequency     |  |  |
|-------------|---------------|--|--|
| 0 - 4       | 6             |  |  |
| 5 – 9       | 11            |  |  |
| 10-14       | 6             |  |  |
| 15 - 19     | 4             |  |  |
| 20 - 24     | 3             |  |  |
|             | <i>n</i> = 30 |  |  |

| Midpoint of groups |  |  |  |
|--------------------|--|--|--|
| 2                  |  |  |  |
| 7                  |  |  |  |
|                    |  |  |  |
|                    |  |  |  |
|                    |  |  |  |
|                    |  |  |  |

- b) Input the data into the calculator AS SHOWN IN THE PREVIOUS EXAMPLE.
- c) Calculate the value of the mean.



d) Find the Standard Deviation correct to 2 decimal places.

AC SHFT 1 4 3 = 0X \_

#### How to set your calculator to round off to 2 decimal places

| 1:MthIO 2:LineIO<br>3:De9 4:Rad<br>5:Gra 6:Fix<br>7:Sci 8:Norm | Key Sequence:<br>SHIFT MODE 6<br>Now select decimal places<br>2 | Fix 0~9? |
|----------------------------------------------------------------|-----------------------------------------------------------------|----------|
|----------------------------------------------------------------|-----------------------------------------------------------------|----------|

#### How to clear your calculator from rounding off to 2 decimal places

| 1:MthIO 2:LineIO           | Keys Sequence:         |           |
|----------------------------|------------------------|-----------|
| 3:De9 4:Rad<br>5:Gra 6:Fix | SHIFT MODE 8<br>Select | Norm 1~2? |
| 7:Sci 8:Norm               | 2                      |           |

Norm 1 is the **default setting** and gives answers in scientific notation. e.g.  $1 \div 50\ 000 = 2\ x\ 10^{-5}$ Norm 2 is **generally preferred** as answers are only expressed in scientific notation when they are too big to fit on the screen. e.g.  $1 \div 50\ 000 = 0.00002$ 

## 2. LINEAR REGRESSION 2: A+BX

Linear Regression predicts a relationship between a dependent variable (y) and an independent variable (x)

Where the relationship approaches that of a straight line.

$$y = \mathbf{A} + B\mathbf{x}$$

**Correlation Co-efficient (r)** is the measure of the strength of the relationship between the variables.

 $-1 \le r \le 1$ 

Our conclusion for "r" always includes strength and direction.

Scatter Plots showing Correlation:



Consider the following table:

Let's investigate whether there is a linear relationship between temperature & atmospheric pressure.

| x<br>Temperature<br>(°C) | <i>y</i><br>Atmospheric<br>pressure (kPa) |
|--------------------------|-------------------------------------------|
| 10                       | 100,3                                     |
| 15                       | 100,5                                     |
| 20                       | 101,0                                     |
| 25                       | 101,1                                     |
| 30                       | 101,4                                     |

#### Pressure is dependent on temperature,

so, temperature is the *x* variable and pressure the *y* variable.



| Solution:                                            | Key Sequence: |
|------------------------------------------------------|---------------|
| Set your calculator to Stats mode for Bivariate data | MODE 3 2      |

| Enter the data into the table:                                      | 10 =                 |  |  |
|---------------------------------------------------------------------|----------------------|--|--|
| Input <i>x</i> -values                                              | 15 =                 |  |  |
|                                                                     | 20 =                 |  |  |
|                                                                     | 25 =                 |  |  |
| Use the [REPLAY] arrows to move the cursor to the <i>y</i> -column. | 30 =                 |  |  |
| Input y-values                                                      | $\odot \odot$        |  |  |
| STAT IO STAT IO                                                     | $100 \cdot 3 \equiv$ |  |  |
|                                                                     | 100058               |  |  |
| 릐 – – –                                                             |                      |  |  |
|                                                                     |                      |  |  |
|                                                                     |                      |  |  |
| Clear the screen - ready for the <b>Regression sub menu</b>         |                      |  |  |
| 1:Type 2:Data                                                       |                      |  |  |
| 3:Sum 4:Var                                                         |                      |  |  |
| 5:Reg 6:MinMax                                                      |                      |  |  |

#### Breakdown of Regression sub menu

| Key    | Menu Item         |            | Explanation                                                                                                                                              |
|--------|-------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5: Reg | 1:A<br>3:r<br>5:9 | 2:в<br>4:% | <ol> <li>Regression co-efficient of A</li> <li>Regression co-efficient of B</li> <li>Correlation co-efficient r</li> <li>Estimated value of x</li> </ol> |
|        |                   |            | 5. Estimated value of y                                                                                                                                  |

#### 1. CORRELATION CO-EFFICIENT



**r** is very close to ...... Hence there is a..... **linear correlation** between temperature and atmospheric pressure.

2. CALCULATE A (y intercept) & B (gradient) to determine the line of best fit: y = A + Bx

| • | Calculate A | AC | SHIFT | 1 | 5 | 1 | 三 | A. |
|---|-------------|----|-------|---|---|---|---|----|
|---|-------------|----|-------|---|---|---|---|----|

• Calculate B AC SHFT 1 5 2 =  $\mathbf{E}$  =

So, the line of best fit is: y =

AC SHIFT 1 4 2 =

3. FIND A SECOND POINT TO PLOT THE LINE OF BEST FIT





Once you plot the linear equation you can then make projections using your scatter plot.

#### HOW TO MAKE PROJECTIONS ON THE CALCULATOR

# RULE:Step 1: Input what is givenStep 2: Regression sub menu select which variable is required

A. What is the approximate temperature if the atmospheric pressure is 100 kPa?

### AC 1 0 0 SHFT 1 5 4 $\equiv$ 1002 \_

AC [SHIFT] 1 4 5 =

The temperature is.....°C when the pressure is 100 kPa Extrapolation: value predicted lies outside the domain and range of the data set given

**B.** What is the approximate atmospheric pressure when the temperature is 18°C?

AC 1 8 HFT 1 5 5 = 189  $_{=}$ 

### SELECTING RANDOM SAMPLES

Let **the calculator** choose a random sample of Integers between 1 and 52, to play the lotto:





\*NOTE\* every calculator will give a different string of numbers (Integers are repeated)