CASIO. fx-991ZA PLUS II

TABLE \& STAT MODE

LIKE US ON

VISIT OUR
WEBSITE
FOR
RESOURCES

CASIO
CALCULATORS
www.casio.jamesralphedu.co.za

MODE 7: TABLE

A.GENERATE TABLES TO SKETCH GRAPHS

1. $y=2 x+3 \quad-1 \leq x \leq 3$

- Input $f(x)$ formula $\boldsymbol{\Xi}$
to input the variable x :

- $g(x)=\boldsymbol{Z}$

And the co-ordinates to plot are:
$(-1 ; 1)(0 ; 3)(1 ; 5)(2 ; 7)(3 ; 9)$
$f(X)=2 X+a$

- Set boundaries for your table:

Start? 1 (1 O
End? 3 O
Step? 1 O

Remember: $A C$ returns you to the formula

2. Find the points of intersection of the straight-line $\mathrm{f}(x)=x-3$ and the parabola $\mathrm{g}(x)=x^{2}-x-6$ when $x \varepsilon[-3 ; 4]$
Key Sequence:

- Input $\mathrm{f}(x)$ formula Ξ
- Input $g(x)$ formula Ξ
- Set boundaries for the table:

Point of Intersection (3;0)

* ZOOM IN * and find the turning point of $g(x)$

Key Sequence:

- AC
- Change the boundaries of the table Start? 0 O End? 1 O
Reduce the STEPS/INTERVALS for a more detailed table. Step? - 5 5

Turning point of $g(x):(0,5 ;-6,25)$

On screen:

3．Compare：$y=\sin x$ and $y=\cos x \quad x \in\left[0^{\circ} ; \mathbf{3 6 0}{ }^{\circ}\right]$

Key Sequence：

－ $\operatorname{Input} f(x)$ formula $\boldsymbol{\Xi}$
－Input $g(x)$ formula \boldsymbol{E}
－Set boundaries for your table：
Start？ 0 Ehd 3060

You need to carefully select the STEPS （or INTERVALS）for your graph．
Consider the equations as a guideline． Step？ 90

On screen：

$f(X)=\sin (\mathrm{X}) \quad \mathrm{g}(\mathrm{X})=\mathrm{COS}(\mathrm{X})$

B．SOLVING EQUATIONS IN TABLE MODE

Quadratic equation

$$
x^{2}-5 x+6=0
$$

Generate a TABLE for the equation \＆read off the x value where $\mathrm{f}(x)=0$

Key Sequence：

－Input $\mathrm{f}(x)$ equation $\boldsymbol{\Xi}$
to input the variable x ：

ALPHA $)$

－$g(x)=\boldsymbol{Z}$
－Set boundaries for your table：
Start？ •国 $^{\text {® }}$
End？ 6 回
Step？ 1 回
$f(x)=0$ at $x=2$ or $x=3$

On screen：

$$
f(x)=A-A_{2} x+E
$$

DOMAIN：Negative $\boldsymbol{\&}$ positive values of the constant
STEPS：Reciprocal／Inverse of the co－efficient of the highest power of x

DON＇T FORGET $f(x) \& g(x)-20 x$ values $f(x)-30 x$ values HOW TO CHANGE：			
SHIFT MODE ${ }^{\text {P }}$		4	$\begin{aligned} & \text { select Type? } \\ & 1: f(x), g(x) \\ & 2: f(x), \exists \end{aligned}$

STATISTICS

"The practice of collecting and analysing numerical data in large quantities"
Wikipedia

MODE 3: Statistics

1. Single variable / Data handling
2. Linear regression

1:1-VAR 2: $\mathrm{F}+\mathrm{E}^{\mathrm{X}}$ 3:-+CX2 4:1n X
 7:A. X A E B: $1 / \mathrm{X}$
3. Quadratic regression
4. Logarithmic regression
5. Exponential regression
6. AB exponential regression
7. Power regression
8. Inverse regression

1. SINGLE VARIABLE DATA HANDLING 1: 1-'V'AF:
 A. Ungrouped Data

The following data set represents the March rainfall figures (in mls) for the past 12 years for a South African town:

77	75	68	81	110	90	81	42	68	81	95	72

NOTE: some of the values have been repeated - It is useful to have the frequency table on
How to set up a frequency table:
SHIFT MODE 94

The frequency table helps:

- to determine mode easily
- to group the data and therefore accommodate more values

Using your calculator find:

MEASURES OF CENTRAL TENDENCY / AVERAGES

1. MEAN: sum of values divided by the number of values
2. MODE: value which occurs most often
3. MEDIAN: the central number of a data set

MEASURE OF DISPERSION / SPREAD AROUND THE AVERAGE

4. RANGE: highest value minus lowest value
5. QUARTILES: measure the spread of values above and below the mean by dividing the distribution into four groups.
6. STANDARD DEVIATION: measure of dispersion around the mean
7. VARIANCE: standard deviation squared

Solution:	Key Sequence:
Set your calculator to Stats mode for Univariate data	MODE 3
Enter the data into the table: Input all the x-values first Use the arrows to move the cursor to the top of the y column. Input y-values	
	$\triangle \mathrm{SH} \mathrm{ACT}$

Breakdown of Single variable sub menu

Key	Menu Item		Explanation
1: Type	Stats menu		Change statistical calculation type
2: Data			Displays inputted data
3: Sum	1: 5×2	$2: 5 x$	1. Sum of squares 2. Sum
4: Var	$\begin{aligned} & 1: 1 \\ & 5: 6 x \end{aligned}$	$\begin{aligned} & 2: \bar{x} \\ & 4: \equiv x \end{aligned}$	1. Number of samples 2. Mean 3. Population standard deviation 4. Sample standard deviation
5: Distr			Perform normal distribution calculations
6: MinMax	$\begin{aligned} & 1: m i n x \\ & 3: 01 \\ & 5: 03 \end{aligned}$	2:max 4:med	1. Minimum value 2. Maximum value 3. First quartile 4. Median 5. Third quartile

1. MEAN

SHIFT 142 2 $\bar{x}=$
2. MODE

AC SHIFT 122 Find the highest frequency

3. MEDIAN

4. RANGE

5. QUARTILES

AC SHIFT 1 6 3 (0) $01=$
AC SHIFT 1 6 5 (5 [3:
Using the five-number summary (maximum, minimum, median \& quartiles) you can draw a box and whisker diagram.
6. STANDARD DEVIATION (POPULATION)

DETERMINE THE PERCENTAGE OF THE RAINFALL FIGURES WITHIN ONE STANDARD DEVIATION FROM THE MEAN.

(77) 75
68
(81) 110
90
81
42
68
81
95

B. Grouped Data

When data is grouped it is first necessary to find a single value to represent each class. This single value is the midpoint of the interval.

Suppose you asked a group of men to count the number of items in their pockets.

NOTICE:

- The data items in the table below are groups, so first you need to find the midpoints of the groups.
Notice that the numbers $0,1,2,3$ and 4 are included in the group $0-4$. The middle score is thus 2.
a) First calculate the midpoint X of each of the groups

No of items	Frequency
$0-4$	6
$5-9$	11
$10-14$	6
$15-19$	4
$20-24$	3
	$\boldsymbol{n}=\mathbf{3 0}$

Midpoint of groups
2
7

b) Input the data into the calculator - AS SHOWN IN THE PREVIOUS EXAMPLE.
c) Calculate the value of the mean.

뱁 1 (4) [2] $\bar{x}=$

d) Find the Standard Deviation correct to 2 decimal places.

How to set your calculator to round off to 2 decimal places

	Key Sequence: SHIFT MODE 6 Now select decimal places 2	Fix 0*9\%

How to clear your calculator from rounding off to 2 decimal places

	$\begin{aligned} & \text { Keys Sequence: } \\ & \text { SHIFT MODE } 8 \\ & \text { Select } \\ & 2 \end{aligned}$	Norm 1*2?

Norm 1 is the default setting and gives answers in scientific notation．
e．g． $1 \div 50000=2 \times 10^{-5}$
Norm 2 is generally preferred as answers are only expressed in scientific notation when they are too big to fit on the screen．
e．g． $1 \div 50000=0.00002$

2．LINEAR REGRESSION

ジ日 $\mathrm{F}+\mathrm{E}$

Linear Regression predicts a relationship between a dependent variable（y）and an independent variable（ x ）
Where the relationship approaches that of a straight line．

$$
y=\mathbf{A}+B x
$$

Correlation Co－efficient（r）is the measure of the strength of the relationship between the variables．

$$
-1 \leq r \leq 1
$$

Our conclusion for＂r＂always includes strength and direction．
Scatter Plots showing Correlation：

STRONG POSITIVE CORRELATION

STRONG NEGATIVE CORRELATION

NON－LINEAR CORRELATION

Consider the following table:
Let's investigate whether there is a linear relationship between temperature $\&$ atmospheric pressure.

\boldsymbol{x} Temperature $\left({ }^{\circ} \mathbf{C}\right)$	\boldsymbol{y} Atmospheric pressure (kPa)
10	100,3
15	100,5
20	101,0
25	101,1
30	101,4

Pressure is dependent on temperature, so, temperature is the x variable and pressure the y variable.

Solution:	Key Sequence:
Set your calculator to Stats mode for Bivariate data	MODE $3 \mathbf{2}$

Enter the data into the table: Input x-values Use the [REPLAY] arrows to move the cursor to the y-column. Input y-values	
Clear the screen - ready for the Regression sub menu	AC SHIFT 1

Breakdown of Regression sub menu

Key	Menu Item	Explanation	
5: Reg		1. Regression co-efficient of A	
	$1: A$	$\mathbf{2 : E}$	2. Regression co-efficient of B
	$\mathbf{3 : r}$	$4: \AA$	3. Correlation co-efficient r
			4. Estimated value of x
		5. Estimated value of y	

1. CORRELATION CO-EFFICIENT

\mathbf{r} is very close to \qquad Hence there is a linear correlation between temperature and atmospheric pressure.
2. CALCULATE $\mathbf{A}(\mathbf{y}$ intercept) $\& \mathbf{B}$ (gradient) to determine the line of best fit: $\boldsymbol{y}=\mathbf{A}+\boldsymbol{B} \boldsymbol{x}$

- Calculate A AC SHIFT 1510 B $=$
- Calculate B AC SHIFT 1 5 2 E $=$

So, the line of best fit is: $\quad y=$
3. FIND A SECOND POINT TO PLOT THE LINE OF BEST FIT

Once you plot the linear equation you can then make projections using your scatter plot.

HOW TO MAKE PROJECTIONS ON THE CALCULATOR

RULE: Step 1: Input what is given

Step 2: Regression sub menu select which variable is required
A. What is the approximate temperature if the atmospheric pressure is 100 kPa ?

The temperature is \qquad ${ }^{\circ} \mathrm{C}$ when the pressure is 100 kPa Extrapolation: value predicted lies outside the domain and range of the data set given
B. What is the approximate atmospheric pressure when the temperature is $18^{\circ} \mathrm{C}$?

The pressure is \qquad . kPa when the temperature is $18^{\circ} \mathrm{C}$
Interpolation: value predicted lies within the domain and range of the data set given

SELECTING RANDOM SAMPLES

Let the calculator choose a random sample of Integers between 1 and 52, to play the lotto:

NOTE every calculator will give a different string of numbers (Integers are repeated)

