

FX-82ZA PLUS vs. FX-991ZA PLUS

CASIO FX-82ZA PLUS		CASIO FX-99	CASIO FX-991ZA PLUS	
1: COMP	2: STAT	1: COMP	2: CMPLX	
3: TABLE		3: STAT	4: BASE-N	
		5: EQN	6: MATRIX	
		7: TABLE	8: VECTOR	

Don't Forget

Initialise/Reset your calculator

when you want to clear your calculator & return the calculation mode and setup to the initial default settings.

<u>Note</u>:

This operation also clears all data

currently in the calculator memory

TIME CALCULATIONS A.CONVERTING FROM A DECIMAL TO HOURS, MINUTES AND SECONDS

How long will it take to travel a distance of 534km, if your average speed is 90km/h?

At what speed are you travelling if 150km takes 1 hour 16 minutes and 17 seconds.

2. 256 =

3. 2 835 =

MODE 1 : COMP (Computational Mode)

Using CALC to find the value of an expression

Using <u>SOLVE</u> to find the solution of equations

CASIO means TECHNOLOGY

accurate the solution

2) Solve for *b*, when y = 3, x = 2, a = 2 and c = 6

Substitute

Solve: 2 log *x* + 3 log *x* = 10 *x* = **100**

SOLVE works in COMPUTATIONAL mode only

SOLVE can solve for variables other than "x"

SOLVE works for equations other than quadratic & cubic

SCIENTIFIC NOTATION

✓ CONVERTING FROM SCIENTIFIC NOTATION TO A WHOLE NUMBER OR DECIMAL

Convert 3×10^4 to a rational number:

MODE 5 : EQN (Equation)

- 1. Simultaneous equations (2 unknowns)
- 2. Simultaneous equations (3 unknowns)
- 3. Quadratic equation
- 4. Cubic equation

1:anX+bnY=Cn 2:anX+bnY+CnZ=dn 3:aX2+bX+c=0 4:aX3+bX2+cX+d=0

MODE 5 : EQN

Solving SIMULTANEOUS EQUATIONS with 2 unknowns

Solve for x and y: 3x + 2y = -8 and 5x - 4y = -63 = 2 = 8 = 5 = 4 = 6 =

MODE 5 : EQN

 $2x^{3} + 3x^{2} = 11x + 6$ $2x^{3} + 3x^{2} - 11x - 6 = 0$ 2 = 3 = 11 = 6 = -6

MODE 5 : EQN

MODE 1 : COMP Calculus

Integration

Find the area of the region bounded by the graphs $f(x) = x^2 - x - 6$ and g(x) = x - 3

Step 2: Solve for the intersection of the two graphs

<u>Using EQN MODE</u> - 3: Quadratic equation $x^2 - x - 6 = x - 3$ $x^2 - 2x - 3 = 0$ $x_1 = 3 \text{ or } x_2 = -1$ Hence our interval is [-1;3]

See the INSIDE COVER of the calculator:

MODE 4 : BASE-N

MODE 2 : CMPLX (Complex Number)

- Express $\sqrt{-16}$ in terms of *i*: $\sqrt{-16}$ Math A 4i
- Simplify i⁵:

Math 🔺

MODE 2 : CMPLX

- Simplify (8 + 6i) + (3 + 2i):

 (8 + 6 ENG) +

 (8 + 6i) + (3 + 2i)

 (8 + 6i) + (3 + 2i)

 (11 + 8i)
- Simplify -4i(3 5i): -4i(3-5i) -20-12i

$$\frac{(-5+9i)}{1-2i} \xrightarrow{\square 23}{-\frac{1}{5}i}$$

MODE 2 : CMPLX

■ Find the conjugate of -3 + 7*i*:

2 (--) 3 🛨 7 ENG

• Find the modulus & argument of 1 + i:

ANGLES : COMP MODE

Converting from Decimal Degree notation to Degree-Minute-Second (D-M-S) notation:

Converting from D-M-S notation to Decimal Degree notation:

Express 75°23′54″ in decimal degree notation:

ANGLES : COMP MODE

Converting from Radians to Degrees:

Converting from Degrees to Radians:

