USING A CASIO SCIENTIFIC CALCULATOR IN THE TECHNICAL MATHS CLASSROOM

Astrid Scheiber - CASIO

Jackie Scheiber - Jackie Scheiber \& Associates
Adequate knowledge of calculator skills makes the teaching of Technical Maths easier and enables the educator to assist their learners more efficiently. This workshop will guide you through the calculator functions: applicable to the subject and unique to the CASIO FX-991ZA PLUS scientific calculator.

Motivation:

As of 2015 Technical Maths has been introduced as a FET subject for learners at Technical schools, as an alternative and value adding substitute to Maths Literacy.

The aim of Technical Maths is to apply the Science of Maths to the Technical field where the emphasis is on APPLICATION and not on abstract ideas. These learners are encouraged to develop fluency in computation skills with the usage of calculators, as stated by the current Technical Maths CAPS document.

This workshop serves to increase educators understanding of the CASIO scientific calculator. In turn, it will foster self-confidence and a positive attitude towards many aspects of the subject, enhancing both the educators' and learners' understanding.

FX-82ZA PLUS vs. FX-991ZA PLUS

CASIO FX-82ZA PLUS	CASIO FX-9912A PLUS	
1: COMP	2: STAT	1: COMP
3: TABLE		2: CMPLX
		3: STAT
	4: BASE-N	6: MATRIX
	7: TABLE	8: VECTOR

NUMBER SYSTEMS

Complex Number Calculations

In the Real Number System，we can＇t find the square root of a negative number．
We call numbers such as $\sqrt{-3}$ or $\sqrt{-16}$ imaginary numbers．
Both of these numbers $\sqrt{-3}$ and $\sqrt{-16}$ exist in the Complex Number System using i ．
Express $\sqrt{-16}$ in terms of i ：
$\sqrt{-16}=\sqrt{-1} . \sqrt{16}=i .4=4 . i$
回曰回回

Express the following roots of negative numbers in terms of i ：
a）$\sqrt{-5}$
$\sqrt{5} i$
b）$\sqrt{-18}$
$3 \sqrt{2} i$
c）$-\sqrt{-11}$
$-\sqrt{11} i$
d）$-\sqrt{-50}$
$-5 \sqrt{2} i$

We define the number i such that $i=\sqrt{-1}$ and $i^{2}=-1$

Simplify i^{5}
ENG $x^{\square} 5 \square$

Simplify：
a）i^{4}
1
b）i^{99}
$-\boldsymbol{i}$
c）i^{100}
1
d）i^{3} － \boldsymbol{i}

Complex numbers are numbers that consist of real numbers \＆imaginary numbers．
They are in the form of $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}$ ，where \boldsymbol{a} represents a real number $\& \boldsymbol{b}$ represents imaginary numbers（Note that both $a \& b$ can be 0 ）
Examples of complex numbers are $2+3 i,-4+i$ ，etc．

A．Adding \＆Subtracting Complex Numbers

Complex numbers obey the commutative，associative \＆distributive laws．
Thus we can add $\&$ subtract them as we do binomials．
When adding \＆subtracting complex numbers，we add（or subtract）the real number parts \＆then add（or subtract）the imaginary number parts．

Simplify:

1) $(8+6 i)+(3+2 i)$

$11+8 \mathbf{i}$
2) $(4+5 i)-(6-3 i)$

$(4+5 i)-(6-3 i)$
$-2+8 i$
Simplify:
a) $(5-6 i)+(3+2 i)$
8-4i
b) $(4-12 i)-(9+6 i)$
-5-18i

B. Multiplying Complex Numbers

The property $\sqrt{a} \sqrt{b}=\sqrt{a b}$ does not hold in general for complex numbers.
However, it does hold when $a=-1$ and b is non-negative.
This means that $\sqrt{-1} \sqrt{4}=\sqrt{-1} .2=2 \sqrt{-1}=2 i$,

$$
\text { BUT } \sqrt{-1} \sqrt{-4} \neq \sqrt{+4}
$$

To multiply square roots of negative real numbers, we first express them in terms of i and then multiply.

Simplify:

1) $-4 i(3-5 i)$ $=-4 i .3+(-4 i)(-5 i)=-12 i+20 i^{2}=-12 i+20(-1)=-20-12 i$

$-4 i(3-5 i)$
2) $\sqrt{-2} \cdot \sqrt{-5}$
$=\sqrt{-1} \sqrt{2} \cdot \sqrt{-1} \sqrt{5}=i \cdot \sqrt{2} \cdot i \cdot \sqrt{5}=i^{2} \cdot \sqrt{10}=-1 \sqrt{10}$

Page | 4

$$
\begin{array}{|cc|}
\hline \sqrt{-2} \times \sqrt{-5} \sqrt{\text { chix }} & \\
& -\sqrt{10} \\
\hline
\end{array}
$$

Simplify:
a) $-3 i .8 i$
24
b) $(1+2 i)(1+3 i)$
$-5+5 i$
c) $\sqrt{-16} \cdot \sqrt{-25}$

C. Dividing Complex Numbers

Often, in order to divide complex numbers, we use conjugates.
The conjugate of $a+b i$ is $a-b i$,
\& the conjugate of $a-b i$ is $a+b i$.

Find the conjugate of $-3+7 i$

Find the conjugates of:
a) $14-5 i$
$14+5 i$
b) $4 i$

$-4 i$

Simplify: $\frac{-5+9 i}{1-2 i}$	multiply the fraction by 1 i.e. multiply both

$=\frac{-5+9 i}{1-2 i} \times \frac{1+2 i}{1+2 i}$
the numerator and the denominator by the conjugate of the denominator

Simplify:
a) $\frac{-4+6 i}{2}$
$-2+3 i$
b) $\frac{7+3 i}{5 i}$
$\frac{3}{5}-\frac{7}{5} i$

Binary Calculations

Dec 0	

Binary Number System

In mathematics \& digital electronics, a binary number is a number expressed in the base-2 numeral system which represents numeric values using two different symbols: typically 0 (zero) and 1 (one)

A. Conversion from Decimal to Binary

To express a decimal number in binary form we decompose the decimal number into the sum of powers of base 2.

Convert the decimal number 75 to binary \square 5 $10 g$	
Convert the decimal number 42 to binary $x^{2}-2, \log$	

Convert the following decimal numbers to binary:
a) 19
b) 36
c) 56
10011
100100
111000

B. Conversion from Binary to Decimal

A binary number can be converted to a decimal number by calculating the sum of the products of each digit (0 or 1) \& the actual place value of the position of the digit.

Convert the binary number 110001 to decimal

$1000010 \times \sqrt{2}$

110001

Convert the binary number 111 to decimal

Convert the following binary numbers to decimal:
a) 10
b) 1010121
c) 1111030

C. Adding \& Subtracting Binary Numbers

The arithmetic of binary numbers is similar to that of decimals.
We can follow the same procedures, as long as we remember that our base is $2 \&$ not 10 .
Add the following binary numbers: $1010+1111$

ㅁog 10100円110110

$1010+1111$

000000000001101011

Subtract the following binary numbers: 111-101

111-101 0000001000001010
a) $101+100$
1001
b) $101-11$ 10
c) $11111+11111$
111110
d) $1101-11$
1010

D. Multiplying \& Dividing Binary Numbers

Multiply the following binary numbers: 101×11

100 1 区 1 1

101×11

0000000000001111
Divide the following binary numbers: $1101 \div 11$

1000101010

1101:11
00000000000010100
Simplify:
a) 1101×11
b) $111101 \div 10$
c) 110011×11
100111
11110
10011001
d) $11011 \div 10$
1101

[^0]

C. Converting from Radians to Degrees

Calculate the degree measure of:

1) $\frac{\frac{5 \pi}{4}}{4}$
55 SHIFT $\times 10^{x}$ 듬 $4>$ SHIFT Ans $2, ~$

2) $1,5 \mathrm{rad}$

$1.5{ }^{r}$	
	85.94366927

D. Converting from Degrees to Radians

Convert 120° to radians

120 SHIFT Ans 1 E

120°		maxt 4
		$\frac{z}{3} \pi$

	Convert to:		
	D-M-S notation	a) $47,7^{\circ}$	$47^{\circ} 42^{\prime} 0^{\prime \prime}$
	Decimal Degree notation	b) $23^{\circ} 12$,	23,2 ${ }^{\circ}$
Page ${ }_{\text {\| }}$	Decimal Degree notation	c) $\frac{\pi}{7}$	25,71428571 ${ }^{\circ}$
	Decimal Degree notation	d) 2 rad	114,591559 ${ }^{\circ}$
	Radians	e) $71,72^{\circ}$	1,25175014 rad

SCIENTIFIC NOTATION

\checkmark CONVERTING FROM SCIENTIFIC NOTATION TO A WHOLE NUMBER OR DECIMAL
Convert 3×10^{4} to a rational number:

$\times 10^{x}$

\checkmark CONVERTING TO SCIENTIFIC NOTATION
Convert 148501000 to scientific notation with three significant digits:
14 85000000

To enter SCIENTIFIC NOTATION:

SHIFT 100 E

3

Select the number of significant digits

Sci $0 \times 9 ?$

ENGINEERING KEY

148501000°
1.49×10^{8}

SHIFT ENG
shifts the decimal point to the left

MODE 1 : COMP (Integration)

Find the area of the region bounded by the graphs

$$
\mathrm{f}(x)=x^{2}-x-6 \text { and } \mathrm{g}(x)=x-3
$$

TO

$\int_{a}^{\square}(x-3)-d x$ $(4-3)-\left(x^{2}-x-6\right) d x$

$\rightarrow 1 \oplus 3$

MODE 1 : COMP (Differentiation)

Find the gradient of the graph

$$
y=2 x^{2}+2 x-5, \text { at } x=1
$$

CASIO means TECHNOLOGY

REFERENCES:

RADMASTE Centre and ETDP SETA - NUMBER AND FINANCIAL MATHEMATICS FOR FET LECTURERS, BOOK 1 - NUMBER AND COMPLEX NUMBERS (2013) University of the Witwatersrand, SA.

The Ukuqonda Institute as well as the SaIF and the DBE of South Africa - TECHNICAL MATHEMATICS GRADE 10 TEACHER GUIDE, http://creativecommons.org/licenses/ by-nc/4.0/

[^0]: * NOTE * The calculator cannot compute fractions in BASE-N MODE

