VARIABLE MEMORIES \& SOLVING EQUATIONS USING A CASIO SCIENTIFIC CALCULATOR

Astrid Scheiber
CASIO

Adequate knowledge of calculator skills makes the teaching of Financial Maths \& Functions easier and enables the educator to assist their learners more efficiently.

Content: This workshop will cover: In-putting values into the CASIO calculator MEMORY, using the saved values \& recalling what has been saved. Using TABLE MODE - solving Simultaneous, Quadratic \& Cubic equations.

Worksheet:

\section*{VARIABLE MEMORIES

To assign the result of $3+5$ to variable A	3 ± 5 (sHIFT ${ }^{\text {BCL }} \rightarrow$
To multiply the contents of variable A by 10	[1IPPA $\Theta \times 100$
To recall the contents of variable A	(1C) $(-)$

On the calculator, financial maths calculations are done as a continuous calculation.
If you use the memory keys, you do not have to key in the same numbers repeatedly.
Which helps save time and prevent confusion.

Example 1

What would an investment of R500 be worth in 6 years' time, if for the first 3 years it earns $12,3 \%$ p.a. compounded monthly and for the last 3 years it earns $13,5 \%$ p.a. compounded half-yearly?

$$
\begin{aligned}
& A=P(1+i)^{n} \\
& A=500\left(1+\frac{0.123}{12}\right)^{3 \times 12}\left(1+\frac{0.135}{2}\right)^{3 \times 2}
\end{aligned}
$$

STORE: $\left(1+\frac{0.123}{12}\right)$ INTO VARIABLE A

SHIFT RCL $(-)$

STORE: $\left(1+\frac{0.135}{2}\right)$ INTO VARIABLE B

$\left(1+\frac{.135}{2}\right) \rightarrow B$	
	$\frac{427}{400}$

SHIFT RCL $9, O$

And then complete the calculation

2

$5004^{3 \times 12^{8}} \mathrm{~B}^{5 \times 2^{\operatorname{max4} 4}}$
1068.110624

Example 2

A man borrows R5 000 and agrees to repay the amount as follows: R2 000 after 2 years, R3 000 after 3 years and the balance at the end of 7 years. How much must he pay if interest is at $12,5 \%$ p.a. compounded quarterly for the first three years and $13,25 \%$ p.a. compounded monthly thereafter?

$$
\begin{aligned}
& A=P(1+i)^{n} \\
& 0=5000(1\left.+\frac{0.125}{4}\right)^{3 \times 4}\left(1+\frac{0.1325}{12}\right)^{4 \times 12} \\
&-2000\left(1+\frac{0.125}{4}\right)^{1 \times 4}\left(1+\frac{0.1325}{12}\right)^{4 \times 12} \\
&-3000\left(1+\frac{0.1325}{12}\right)^{4 \times 12}-X
\end{aligned}
$$

STORE: $\left(1+\frac{0.125}{4}\right)$ INTO VARIABLE A

$\left(1+\frac{.125}{4}\right)+\hat{H}$	
	$\frac{35}{3 Z}$

SHIFT RCL $(-)$

SHIFT RCL $O Q$

And then complete the calculation

3339.480985

- The Memory Keys save time - less calculator keys are pressed.
- The Memory Keys do not have to be cleared to be used again. When saving a new value, it overwrites the existing value.

MODE 3: Table

Find the points of intersection of the straight line $\mathrm{f}(x)=x-3$ and the parabola $\mathrm{g}(x)=x^{2}-x-6$ when $x \varepsilon[-3 ; 4]$

* ZOOM IN * and find the turning point of $\mathbf{g (x)}$

Key Sequence:

- AC
- Change the boundaries of the table
Start? 0
End? 1 O
Reduce the
STEPS/INTERVALS for a more detailed table. Step? • 5 5

Turning point of $g(x):(0,5 ;-6,25)$

SOLVING EQUATIONS

1. Simultaneous equations with 2 unknowns

Solve for \boldsymbol{x} and \boldsymbol{y} :

$$
\begin{aligned}
& 3 x+2 y=-8 \\
& 5 x-4 y=-6
\end{aligned}
$$

Manipulate

$$
\begin{gathered}
y=\frac{-3 x-8}{2} \\
y=\frac{5 x+6}{4}
\end{gathered}
$$

Key Sequence:

- Input $\mathrm{f}(x)$ formula Ξ
- Input $g(x)$ formula $\#$
- Set boundaries for the table: Start? 9 (End? 9 Step? 1 O
$x=-2$ and $y=-1$

$D O N^{\prime} T F O R G E T$
$\boldsymbol{f}(\boldsymbol{x}) \& \boldsymbol{g}(\boldsymbol{x})-20 \boldsymbol{x}$ values
$\boldsymbol{f}(\boldsymbol{x})-\mathbf{3 0} \boldsymbol{x}$ values

HOW TO CHANGE:

Now try: $\left(\frac{1}{4}\right)^{x}=\log _{\frac{1}{4}} x$
Start: $0 \quad$ End: 9
Steps: 0,5

2. Quadratic equation

Generate a TABLE for the equation \& read off the x value where $\mathrm{f}(x)=0$

$$
x^{2}-5 x+6=0
$$

Key Sequence:

- Input $\mathrm{f}(x)$ equation \neq to input the variable x :
ALPHA $)$
- $g(x)=\boldsymbol{Z}$
- Set boundaries for your table:

End? 6 -
Step? 1 日
$f(x)=0$ at $x=2$ or $x=3$

DOMAIN: Negative $\boldsymbol{\&}$ positive values of the constant
STEPS: Reciprocal of the co-efficient of the highest power of x

Now try: $3 x^{2}-5 x=2$

3. Cubic equation

Generate a TABLE for the equation \& read off the x value where $\mathrm{f}(x)=0$

$$
2 x^{3}+3 x^{2}-11 x-6=0
$$

Key Sequence：
－Input $\mathrm{f}(x)$ equation Ξ
－$g(x)=\Xi$
－Set boundaries for your table：
Start？ $\boldsymbol{\square} \boldsymbol{\sigma}$
End？ 6 B
Step？ 1 回 2
－Turn $g(x)$ off
SHIFT 1000 C$)$

$$
f(x)=0 a t
$$

$x=-3$ or $x=-\frac{1}{2}$ or $x=2$
On screen：

$$
f(X)=4 X^{2}-11 X-6
$$

Insufficient Math
［AC］：Cヨトにel
［1］［4］：Goto

Now try：$x^{3}-\frac{3}{2} x^{2}-4 x+6=0$

LIKE US ON	VISIT OUR WEBSITE FOR RESOURCES
CASIO CALCULATORS SOUTH AFRICA	WWW．casiocalcs．co．Za

