CASIO fx-82ZA PLUS
 FUNCTIONS
 Rencia Lourens - RADMASTE Centre

MODE 3: Table

[MODE] [3:TABLE]

A. Intersection of Graphs

1. Find the points of intersection of the straight line $\mathrm{f}(x)=x-3$ and the parabola $=x^{2}-x-6$ when $x \in[-3 ; 4]$

Key Sequence: \quad On screen:

- Input $\mathrm{f}(x)$ formula $[=]$
to input the variable x :
[ALPHA] [X]
- Input $\mathrm{g}(x)$ formula [=]
- Set boundaries for the table:

Start? [-3] [=]
End? [4] [=]
Steps? [1] [=]
Point of Intersection (-1; -4)

Point of Intersection (3;0)

2. Find the point(s) of intersections of the graphs $y=x^{2}-3 x-4$ and $y=-x+1 \frac{1}{4}$

- This question differs from the previous one because it is not giving us an interval to work with; we hence have to choose our own one. An easy domain to start with is [5; 5].
- The question also differs from the previous one because we do not find an intersection immediately.

Key Sequence: \quad On screen:

- Input $\mathrm{f}(x)$ formula $[=]$
- Input $\mathrm{g}(x)$ formula [=]
- Set boundaries for the table:

Start? [-5] [=]
End? [5] [=]
Steps? [1] [=]

Note:

- $-5 \leq x \leq-2: f(x)<g(x)$
- $-1 \leq x \leq 3: f(x)>g(x)$
- $4 \leq x \leq 5: f(x)<g(x)$

Hence:

- One Point of Intersection should be -$2<x<-1$
- Second point of intersection should be $3<x<4$
- $f(X)=-X+1 \frac{1}{4}$
- $\mathrm{g}(\mathrm{X})=\mathrm{X}^{2}-3 \mathrm{X}-4$

:		X	$f(x)$	$g(x)$
	1	-5	6.25	36
	2	-4	5.25	24
	3	-3	4.25	14
	4	-2	3.25	6
		-1	2.25	0
	6	0	1.25	-4
	7	1	0.25	-6
ould be -	8	2	-0.75	-6
	9	\rightarrow	-1.75	-4
should	10	4	-2.75	0
	11	5	-3.75	6

- We are going to repeat the process but first focus on the domain $-2 \leq x \leq-1$.
- Afterwards we will repeat the process for the domain $3 \leq x \leq 4$.

Key Sequence for the next example is actually
[AC] (brings you to $\mathrm{f}(\mathrm{x})$)
[=] (brings you to $\mathrm{g}(\mathrm{x})$)
[=] (brings you to [start?])
So you don't have to enter the equations again.
You just have to press [AC]; [=]; [=] and you are at start

Key Sequence:

- Set boundaries for the table:

Start? [-2] [=]
End? [-1] [=]
Steps? [0.25] [=]
Point of Intersection (-1,5;2,75)

Next domain:

Key Sequence:

- [AC] [=] [=]
- Set boundaries for the table: Start? [3] [=] End? [4] [=] Steps? [0.25] [=]
Point of Intersection (3,5;-2,25)

On screen:

- $f(X)=-X+1 \frac{1}{4}$
- $g(X)=X^{2}-3 X-4$

	X	$f(x)$	$g(x)$
1	3	-1.75	-4
2	3.25	-2	-3.1875
3	3.5	-2.25	-2.25
4	3.75	-2.5	-1.1875
5	4	-2.75	0

If we still did not find the point of intersection we can

- change the domain again - by making sure that we have the intervals where there is a change from $f(x)<g(x)$ to $f(x)>g(x)$ or vice versa.
- change the steps again

B. Finding the turning point of a parabola

1. Find the turning point of $f(x)=x^{2}-4 x-1$

- We are not sure about the range so will work with $x \in[-5 ; 5]$

Key Sequence:	On Screen:$f(X)=X^{2}-4 X-1$			
		x	$f(x)$	$g(x)$
- Input $\mathrm{f}(x)$ formula $[=]$	1	-5	44	
- Set boundaries for the table:	2	-4	31	
Start? [-5] [=]	3	-3	20	
End? [5] [=]	4	-2	11	
Turning point of $f(x)$$(2 ;-5)$	5	-1	4	
	6	0	-1	-
	7	1	-4	$)$
	-8	2	-5)
	9	3	-4	\checkmark
	10	4	-1	-
	11	5	4	

2. Find the turning point of $f(x)=4 x^{2}-4 x-2$

- Start with domain $x \in[-5 ; 5]$.

Key Sequence:	On Screen:$f(X)=4 X^{2}-4 X-2$			$g(x)$
		x	$f(x)$	
- Input $\mathrm{f}(x)$ formula [=]	1	x -5	$f(x)$ 118	
- Input $\mathrm{g}(x)$ formula [=] - Set boundaries for the table:	2	-4	$\begin{array}{r}18 \\ 78 \\ \hline\end{array}$	
Start? [-5] [=]	3	-3	46	
End? [5] [=]	4	-2	22	
Steps? [1] [=]	5	-1	6	
urning point should be in this		0 1	-2	
interval	8	2	6	
	9	3	22	
	10	4	46	
	11	5	78	

- We are going to repeat the process but first focus on the domain $0 \leq x \leq 1$

Key Sequence:	On Screen:$f(X)=4 X^{2}-4 X-2$		
- [AC] [=] [=]			
- Set boundaries for the table:		x	$f(x) \quad g(x)$
Start? [0] [=]	1	0	-2
End? [1] [=]	2	0.25	-2.75
Steps? [0.25] [=]	$\longrightarrow 3$	0.5	-3
Turning point (0,5; $\mathbf{3}$)		0.75 1	-2.75 -2

3. Find the turning point of $f(x)=2 x^{2}-8,5 x+4$

Start with domain $x \in[-5 ; 5]$.

- We are going to repeat the process but focus on the domain $1 \leq x \leq 3$

Key Sequence:

- [AC] [=] [=]
- Set boundaries for the table:

Start? [1] [=]
End? [3] [=]
Steps? [0.25] [=]

Turning point should be in this interval

> On Screen:
> $f(X)=2 X^{2}-8.5 X+4$

	x	$f(x)$	$g(x)$	
1	1	-2.5		
2	1.25	-3.5		
3	1.5	-4.25		
4	1.75	-4.75		
5	2	-5		
6	2.25	-5		
7	2.5	-4.75		
8	2.75	-4.25		
9	3	-3.5		

- So working with "steps" of 0,25 was not small enough.
- We are going to repeat the process but now focus on the domain $2 \leq x \leq 2,25$ and change the "steps"

Key Sequence:

- [AC] [=] [=]
- Set boundaries for the table:

Start? [2] [=]
End? [2.25] [=]
Steps? [0.0625] [=]
Turning point (2,125; -5,03125)

- Using $S \Leftrightarrow$ D key: $\left(\frac{35}{16} ;-\frac{643}{128}\right)$
- Using $\mathrm{a} \frac{\mathrm{b}}{\mathrm{c}} \Leftrightarrow \frac{\mathrm{d}}{\mathrm{c}}$ key: $\left(2 \frac{3}{16} ;-5 \frac{3}{128}\right)$

- We are looking for symmetry in the $f(x)$ value and then a minimum or maximum point.

C. Finding Intercepts with the axes

1. Find the intercepts with both the axes of the graph of $f(x)=x^{2}-5 x+6$

	On Screen:$f(X)=X^{2}-5 X+6$			
Key Sequence:				
- Input $\mathrm{f}(x)$ formula [=]		x	$f(x)$	$g(x)$
- Input $\mathrm{g}(x)$ formula [=]	1	-5	56	
- Set boundaries for the table:	2	-4	42	
Start? [-5] [=]	3	-3	30	
End? [5] [=]	4	-2	20	
Steps? [1] [=]	5	-2	12	
y - intercept	6	0	6	
\boldsymbol{x} - intercepts	7	1	2	
	$\rightarrow 8$	2	0	
$(2 ; 0)$ and $(3 ; 0)$ are the x-intercepts	9	3	0	
	10	4 5	2	

2. Find the intercepts with both axes of $f(x)=-x^{2}+3 x-3$

Key Sequence: \quad On Screen:

- Input $\mathrm{f}(x)$ formula $[=]$
- Input $\mathrm{g}(x)$ formula [=]
- Set boundaries for the table:

Start? [-5] [=]
End? [5] [=]
Steps? [1] [=]
y - intercept
\boldsymbol{x} - intercepts
$(0 ;-3)$ is the y-intercept
There are no x-intercepts and the turning point will be between $1<x<2$. Just to make sure you can work in the domain $1<x<2$ in steps of 0.25 . We will find that the turning point is at $(1,5 ;-0,75)$ and $0,75<0-$ hence no x - intercepts.
3. Find the intercepts with both axes of $f(x)=-4 x^{2}+8 x+21$.

Key Sequence: - Input $\mathrm{f}(x)$ formula $[=]$ - Input $\mathrm{g}(x)$ formula [=] - Set boundaries for the table: Start? [-5] [=] End? [5] [=] Steps? [1] [=] y - intercept \boldsymbol{x} - intercepts $(0 ; 21)$ is the y-intercept \qquad x - intercepts would be in the intervals $-2<x<-1$ and $3<x<4$	On Screen: $\mathrm{f}(\mathrm{X})=-4 \mathrm{X}^{2}+8 \mathrm{X}+$	$f(x)$ -119 -75 -39 -11 9 21 25 21 9 -11 -39	$g(x)$

D. Finding Vertical Asymptotes of the Reciprocal Function.

1. Find the vertical asymptote for $f(x)=\frac{4}{x-1}+2$

$$
y=\frac{4}{x} \text { for } x \in[-4 ; 4]
$$

Key Sequence:

On screen:

- Input $\mathrm{f}(x)$ formula [=]
- $\mathrm{g}(x)=[=]$
- Set boundaries for the table:

Start? [-5] [=]
End? [5] [=]
Steps? [1] [=]

Asymptote

re the table:

- $\mathrm{f}(\mathrm{X})=\frac{4}{\mathrm{X}-1}+2$

	x	$f(x)$
1	-5	1.33333
2	-4	1.2
3	-3	1
4	-2	0.66666
5	-1	0
6	0	-2
7	1	ERROR
8	2	6
9	3	4
10	4	3.33333
11	5	3

MODE 2: Statistics

[MODE] [2:STAT]

Stats Menu:

Key	Menu Item	Explanation
1.	$1-\mathrm{VAR}$	Single variable / Data handling
2.	$\mathrm{~A}+\mathrm{BX}$	Linear regression
3.	$-+\mathrm{CX}^{2}$	Quadratic regression
4.	$\ln \mathrm{X}$	Logarithmic regression
5.	$\mathrm{e}^{\wedge} \mathrm{X}$	Exponential regression
6.	$\mathrm{~A} \cdot \mathrm{~B}^{\wedge} \mathrm{X}$	AB exponential regression
7.	$\mathrm{~A} . \mathrm{X}^{\wedge} \mathrm{B}$	Power regression
8.	$1 / \mathrm{X}$	Inverse regression

E. Finding the equations of functions

1. Find the equation of the straight line through $(-1 ;-1)$ and $(2 ; 5)$

- Remember in STATS the Linear function is given as $(y=A+B x)$

Key	Menu Item		Explanation
5: Reg	1.	A	Regression co-efficient of A
	2.	B	Regression co-efficient of B
	3.	r	Correlation co-efficient r
	4.	\hat{x}	Estimated value of x
	5.	\hat{y}	Estimated value of y

- Calculate the value of A.
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- $\mathrm{A}=1$
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- $\mathrm{B}=2$
- So the equation is $y=1+2 x$ or in the familiar notation: $y=2 x+1$

2. Find the Quadratic function with x intercepts $(-1 ; 0)$ and $(4,0)$ and y intercept $(0 ; 8)$

- Remember in STATS the Quadratic function is given as $\left(y=A+B x+C x^{2}\right)$

Solution:	Key Sequence:		
Set your calculator to Stats mode Quadratic Regression	$\begin{aligned} & {[\mathrm{MODE}][2: \text { STAT }]} \\ & {[3]\left(-+\mathrm{CX}^{2}\right)} \end{aligned}$		
Enter the data into the double variable table Input x-values first and then y-values.	1 2 3	$\begin{gathered} \boldsymbol{x} \\ -1[=] \\ 4[=] \\ 0[=] \end{gathered}$	\boldsymbol{y} 0 [=] 0 [=] 8 [=]
Use the [REPLAY] arrows to move the cursor to the y-column.			
Clear the screen - ready for the stats sub menu	$\begin{aligned} & \hline \text { [AC] } \\ & \text { [SHIFT] [1] (STAT) } \\ & \hline \end{aligned}$		

Key	Menu Item		Explanation
$5:$ Reg	1.	A	Regression co-efficient of A
	2.	B	Regression co-efficient of B
	3.	C	Regression co-efficient of C
	4.	$\hat{x} 1$	Estimated value of x_{1}
	5.	$\hat{x} 2$	Estimated value of x_{2}
	6.	\hat{y}	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then $\mathrm{A}=8$
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B $=6$
- Now calculate the value of C
- Press: [SHIFT] [1] [5: Reg] [3: C] [=]
- Then $\mathrm{C}=-2$
- Hence the equation is $y=8+6 x-2 x^{2}$ or in the familiar format: $y=-2 x^{2}+6 x+8$.

3. Find the Quadratic function passing through points $(1 ; 2),(-1 ;-2)$ and $(2 ; 7)$.

Key	Menu Item	Explanation	
$5:$ Reg	1.	A	Regression co-efficient of A
	2.	B	Regression co-efficient of B
	3.	C	Regression co-efficient of C
	4.	$\hat{x} 1$	Estimated value of x_{1}
	5.	$\hat{x} 2$	Estimated value of x_{2}
	6.	\hat{y}	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then $\mathrm{A}=-1$
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B = 2
- Now calculate the value of C
- Press: [SHIFT] [1] [5: Reg] [3: C] [=]
- Then $\mathrm{C}=1$
- Hence the equation is $y=-1+2 x+x^{2}$ or in the familiar format: $y=x^{2}+2 x-1$.

4. Find the equation of the exponential graph* passing though the points $(0 ; 1)$ and $(2 ; 4)$.

* The CASIO fx-82ZA+ will only find equations of graphs of the form $y=A . B^{X}$

Key	Menu Item		Explanation
5: Reg	1.	A	Regression co-efficient of A
	2.	B	Regression co-efficient of B
	3.	r	Correlation coefficient
	4.	\hat{x}	Estimated value of x
	5.	\hat{y}	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then $\mathrm{A}=1$
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B = 2
- Hence the equation is $y=1.2^{x}$ or $y=2^{x}$

5. Find the Quadratic function with turning point $(-1 ; 4)$ and through point $(0 ; 5)$.

- We need to identify a third point on the graph. From the turning point we know that the axis of symmetry is $x=-1$. The point symmetrical to $(0 ; 5)$ would then be $(-2 ; 5)$.

Solution:	Key Sequence:		
Set your calculator to Stats mode Quadratic Regression	$\begin{aligned} & {[\text { MODE }[2: \text { STAT }]} \\ & {[3]\left(-+\mathrm{CX}^{2}\right)} \end{aligned}$		
Enter the data into the double variable table		x	y
Input x-values first and then y-values.	1	-1 [=]	4[=]
	2	-2[=]	5 [=]
Use the [REPLAY] arrows to move the cursor to the y-column.	3	0 [=]	5 [=]
Clear the screen - ready for the stats sub menu	$\begin{array}{\|l\|} \hline[\mathrm{AC}] \\ \text { [SHIFT] [1] (STAT) } \\ \hline \end{array}$		

Key	Menu Item		Explanation
$5:$ Reg	1.	A	Regression co-efficient of A
	2.	B	Regression co-efficient of B
	3.	C	Regression co-efficient of C
	4.	$\hat{x} 1$	Estimated value of x_{1}
	5.	$\hat{x} 2$	Estimated value of x_{2}
	6.	\hat{y}	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then $\mathrm{A}=5$
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B = 2
- Now calculate the value of C
- Press: [SHIFT] [1] [5: Reg] [3: C] [=]
- Then $\mathrm{C}=1$
- Hence the equation is $y=5+2 x+x^{2}$ or in the familiar format: $y=x^{2}+2 x+5$.

