CASIO fx-82ZA PLUS FUNCTIONS Rencia Lourens – RADMASTE Centre

MODE 3: Table

[MODE] [3:TABLE]

A. Intersection of Graphs

1. Find the points of intersection of the straight line f(x) = x - 3 and the parabola $g(x) = x^2 - x - 6$ when $x \in [-3;4]$

Key Sequence:	On screen:
• Input f(<i>x</i>) formula [=]	
to input the variable x:	• $f(X) = X - 3$
[ALPHA] [X]	
• Input g(<i>x</i>) formula [=]	• $g(X) = X^2 - X - 6$
• Set boundaries for the table:	x f(x) g(x)
<i>Start?</i> [-3] [=]	1 -3 -6 6
<i>End?</i> [4] [=]	2 -2 -5 0
Steps? $[1] [=]$ Point of Intersection $(-1 + -4)$	→ 3 -1 -4 -4
	4 0 -3 -6
	5 1 -2 -6
	6 2 -1 -4
Point of Intersection (3;0)	7 3 0 0
	8 4 1 6

- 2. Find the point(s) of intersections of the graphs $y = x^2 3x 4$ and $y = -x + 1\frac{1}{4}$
 - This question differs from the previous one because it is not giving us an interval to work with; we hence have to choose our own one. An easy domain to start with is [-5; 5].
 - The question also differs from the previous one because we do not find an intersection immediately.

Key Sequence:	On screen:						
• Input f(<i>x</i>) formula [=]	• $f(X) = -X + 1\frac{1}{4}$						
• Input g(x) formula [=]	• $g(X) = X^2 - 3X - 4$						
• Set boundaries for the table:	$\begin{array}{c c} X & f(x) & g(x) \end{array}$						
Start? [-5] [=]	1 -5 6.25 36						
End? [5] [=] Steps? [1] [=]	2 -4 5.25 24						
Note:	3 -3 4.25 14						
• $-5 \le x \le -2$: $f(x) < g(x)$	4 -2 3.25 6						
• $-1 \le x \le 3$: $f(x) > g(x)$	5 -1 2.25 0						
• $4 \le x \le 5$: $f(x) < g(x)$	6 0 1.25 -4						
Hence:	7 1 0.25 -6						
• One Point of Intersection should be –	8 2 -0.75 -6						
2 < x < -1	9 3 -1.75 -4						
• Second point of intersection should be $3 < r < 4$	10 4 -2.75 0						
	11 5 -3.75 6						

- We are going to repeat the process but first focus on the domain $-2 \le x \le -1$.
- Afterwards we will repeat the process for the domain $3 \le x \le 4$. Key Sequence for the next example is actually
 - [AC] (brings you to f(x))
 - [=] (brings you to g(x))
 - [=] (brings you to g(x)) [=] (brings you to [start?])

So you don't have to enter the equations again.

You just have to press [AC]; [=]; [=] and you are at start

Key Sequence:	On so	reen	:			
• Set boundaries for the table: Start? [-2] [=] End2 [1] [-]	•	f(X	() = -X +	$1\frac{1}{4}$		
<i>Steps?</i> [0.25] [=] Point of Intersection (- 1,5 ; 2,75)	•	g(X	$\mathbf{X}) = \mathbf{X}^2 - \mathbf{\hat{x}}$	3X – 4		
			X	f(x)	g(x)	
		1	-2	3.25	6	
		2	-1.75	3	4.3125	
		3	-1.5	2.75	2.75	
		4	-1.25	2.5	1.3125	
		5	-1	2.25	0	

Next domain:

Key Sequence:	On screen:						
 [AC] [=] [=] Set boundaries for the table: Start² [3] [-] 	• $f(X) = -X + 1\frac{1}{4}$ • $g(X) = X^2 - 3X - 4$						
<i>End?</i> [4] [=] <i>Steps?</i> [0.25] [=]							
Point of Intersection (3,5; -2,25)			X	f(x)	g(x)		
		1	3	- 1.75	-4		
		2	3.25	-2	-3.1875		
		3	3.5	-2.25	- 2.25		
		4	3.75	-2.5	-1.1875		
		5	4	-2.75	0		

If we still did not find the point of intersection we can

- change the domain again by making sure that we have the intervals where there is a change from f(x) < g(x) to f(x) > g(x) or vice versa.
- change the steps again

B. Finding the turning point of a parabola

- 1. Find the turning point of $f(x) = x^2 4x 1$
 - We are not sure about the range so will work with $x \in [-5;5]$

	On Screen:				
	$f(X) = X^2 - 4$				
Key Sequence:		- r	$f(\mathbf{x})$	$q(\mathbf{r})$	I
• Input f(<i>x</i>) formula [=]	1	л 5	$J(\lambda)$	g(x)	
• Input g(<i>x</i>) formula [=]	1	-3	44		
• Set boundaries for the table:	2	_4	31		
<i>Start?</i> [–5] [=]	3	-3	20		
<i>End?</i> [5] [=]	4	-2	11		
<i>Steps?</i> [1] [=]	5	-1	4		
	6	0	-1		
Turning point of f(x)	7	1	-4	111	
(2; -5)	→ 8	2	-5		
	9	3	-4	///	
	10	4	-1		
	11	5	4		

- 2. Find the turning point of $f(x) = 4x^2 4x 2$ Start with domain $x \in [-5;5]$.

	On Screen:				
	$f(X) = 4X^2 - 4$				
 Key Sequence: Input f(x) formula [=] Input g(x) formula [=] Set boundaries for the table: <i>Start</i>? [-5] [=] <i>End</i>? [5] [=] <i>Steps</i>? [1] [=] 	1 2 3 4 5	$\begin{array}{c} x \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array}$	f(x) 118 78 46 22 6	<i>g(x)</i>	
Turning point should be in this interval	6 7 8 9 10 11	0 1 2 3 4 5	-2 -2 6 22 46 78	>	

• We are going to repeat the process but first focus on the domain $0 \le x \le 1$

	On Screen:					
Key Sequence:	$f(X) = 4X^2 - 4X - 2$					
• [AC] [=] [=]						
• Set boundaries for the table:		x	f(x)	g(x)		
<i>Start?</i> [0] [=]	1	0	-2			
<i>End?</i> [1] [=]	2	0.25	-2.75			
Steps? [0.25] [=]	→ 3	0.5	-3			
Turning point (0,5; –3)	4	0.75	-2.75			
	5	1	-2			

3. Find the turning point of $f(x) = 2x^2 - 8,5x + 4$ Start with domain $x \in [-5;5]$.

$=2X^{2}-8$	8.5X + -	4						
			$f(X) = 2X^2 - 8.5X + 4$					
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$ \begin{array}{c} x \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ - \end{array} $	$ \begin{array}{c} f(x) \\ 96.5 \\ 70 \\ 47.5 \\ 29 \\ 14.5 \\ 4 \\ -2.5 \\ -5 \\ -3.5 \\ 2 \\ \end{array} $	<i>g</i> (<i>x</i>)					
	1 2 3 4 5 6 7 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

• We are going to repeat the process but focus on the domain $1 \le x \le 3$

	On Screen:					
Key Sequence:	$f(X) = 2X^2 - 8.5X + 4$					
• [AC] [=] [=]		1	I		1	
•		x	f(x)	g(x)		
• Set boundaries for the table:	1	1	-2.5			
<i>Start</i> ? [1] [=]	2	1.25	-3.5			
<i>End?</i> [3] [=]	3	1.5	-4.25			
<i>Steps?</i> [0.25] [=]	4	1.75	-4.75			
	5	2	-5			
Turning point should be in this	6	2.25	-5			
interval	7	2.5	-4.75	•		
	8	2.75	-4.25			
	9	3	-3.5			

- So working with "steps" of 0,25 was not small enough.
- We are going to repeat the process but now focus on the domain 2 ≤ x ≤ 2,25 and change the "steps"

Key Sequence:	On Screen:						
• [AC] [=] [=]	$f(X) = 2X^2 - 8.5X + 4$						
• Set boundaries for the table:							
<i>Start</i> ? [2] [=]		$x \qquad f(x)$	g(x)				
<i>End?</i> [2.25] [=]	1	2 -5					
<i>Steps?</i> [0.0625] [=]	2 2.062	5 -5.0234375					
Turning point (2.125: -5.03125)	<u> </u>	5 -5.03125					
(35 643)	4 2.187	5 -5.0234375					
• Using S \Leftrightarrow D key: $\left(\frac{-1}{16}; -\frac{-1}{128}\right)$	5 2.2	5 -5					
• Using $a \frac{b}{c} \Leftrightarrow \frac{d}{c}$ key: $\left(2\frac{3}{16}; -5\frac{3}{128}\right)$							

• We are looking for symmetry in the f(x) value and then a minimum or maximum point.

C. Finding Intercepts with the axes

1. Find the intercepts with both the axes of the graph of $f(x) = x^2 - 5x + 6$

	On Screen:					
	$f(X) = X^2 - 5X + 6$					
Key Sequence:						
• Input f(<i>x</i>) formula [=]		x	f(x)	g(x)		
• Input g(<i>x</i>) formula [=]	1	-5	56			
• Set boundaries for the table:	2	-4	42			
Start? $[-5] [=]$	3	-3	30			
End? [5] [=] Steps? [1] [=]	4	-2	20			
	5	-1	12			
y - intercept	▶6	0	6			
x - intercepts	7	1	2			
(0, 6) is the weintercont	→ 8	2	0			
(0, 0) is the y – intercept (2; 0) and (2; 0) are the x – intercepts	→ 9	3	0			
(2, 0) and $(3, 0)$ are the x - intercepts	10	4	2			
	11	5	6			

2. Find the intercepts with both axes of $f(x) = -x^2 + 3x - 3$

Key Sequence:	On Screen:				
• Input f(<i>x</i>) formula [=]	$f(X) = -X^2 + 3$	3X - 3			
• Input g(x) formula [=]					
• Set boundaries for the table:		x	f(x)	g(x)	
<i>Start?</i> [–5] [=]	1	-5	-43		
<i>End?</i> [5] [=]	2	-4	-31		
<i>Steps?</i> [1] [=]	3	-3	-21		
u intercent -	4	-2	-13		
y - Intercept	5	_1	-7		
x - intercepts	6	► 0	-3		
(0; -3) is the y – intercept	7	1	1		
There are no x – intercepts and the	7	\rightarrow	-1 1		
turning point will be between $1 < x < 2$.	8	2	-1		
Just to make sure you can work in the	9	3	-3		
domain $1 < x < 2$ in steps of 0.25.	10	4	-7		
We will find that the turning point is at	11	5	-13		
(1,5; -0,75) and $0,75 < 0$ – hence no					
x-intercepts.					

3. Find the intercepts with both axes of $f(x) = -4x^2 + 8x + 21$.

	On Screen:				
Key Sequence:	$f(X) = -4X^2 +$	8X + 2	21		
• Input f(<i>x</i>) formula [=]					
• Input g(<i>x</i>) formula [=]		x	f(x)	g(x)	
• Set boundaries for the table:	1	-5	-119		
<i>Start</i> ? [–5] [=]	2	-4	-75		
<i>End?</i> [5] [=]	3	-3	-39		
Steps? [1] [=]	4	-2	-11		
y - intercept	5	-1	9		
x - intercepts	6	$\rightarrow 0$	21		
	7	1	25		
(0; 21) is the y – intercept	8	2	21		
x = intercepts would be in the intervals		3	9		
-2 < x < -1 and $3 < x < 4$	10	4	-11		
	11	5	-39		

Key Sequence:	On Screen:				
• [AC] [=] [=]	$f(X) = 4X^2 + 8X + 21$				
• Set boundaries for the table:				· •	
<i>Start?</i> [–2] [=]		x	f(x)		
End? [-1] [=	1	-2	-11		
<i>Steps?</i> [0.25] [=]	2	-1.75	-5.25		
r - intercents	3	→ -1.5	0		
(-1,5; 0) is a x – intercept	4	-1.25	4.75		
	5	-1	9		
AC					
Keep equation		x	f(x)		
• Set boundaries for the table:	1	3	9		
<i>Start</i> ? [3] [=]	2	3.25	4.75		
End [4] [=]	3	→ 3.5	0		
Steps? [0.25] [=]	4	3.75	-5.25		
x - intercepts	5	4	-11		
(3,5; 0) is a <i>x</i> – intercept					

D. Finding Vertical Asymptotes of the Reciprocal Function.

1. Find the vertical asymptote for
$$f(x) = \frac{4}{x-1} + 2$$

 $y = \frac{4}{x}$ for $x \in [-4; 4]$

Key Sequence:	On screen:			
 Input f(x) formula [=] g(x) = [=] 	• $f(X) = \frac{4}{X-1} + 2$			
• Set boundaries for the table:		1	l	1
<i>Start?</i> [-5] [=]		x	f(x)	
<i>End</i> ? [5] [=]	1	-5	1.33333	
<i>Steps?</i> [1] [=]	2	-4	1.2	
Agymntoto	3	-3	1	
Asymptote	4	-2	0.66666	
	5	-1	0	
	6	0	-2	
	7	1	ERROR	
	8	2	6	
	9	3	4	
	10	4	3.33333	
	11	5	3	

MODE 2: Statistics

Stats Menu:

Key	Menu Item	Explanation
1.	1-VAR	Single variable / Data handling
2.	A + BX	Linear regression
3.	$-+CX^2$	Quadratic regression
4.	ln X	Logarithmic regression
5.	e ^ X	Exponential regression
6.	A . B ^ X	AB exponential regression
7.	A . X ^ B	Power regression
8.	1/X	Inverse regression

[MODE] [2:STAT]

E. Finding the equations of functions

- 1. Find the equation of the straight line through (-1; -1) and (2; 5)
 - Remember in STATS the Linear function is given as (y=A+Bx)

Solution:	Key Sequence:		
Set your calculator to Stats mode – Linear	[MODE] [2:STAT]		
Regression	[2] (A+BX)		
Enter the data into the double variable table	x y		
Input <i>x</i> -values first and then <i>y</i> -values.	1 -1 [=] -1 [=]		
	2 2 [=] 5 [=]		
Use the [REPLAY] arrows to move the			
cursor to the <i>y</i> -column.			
Clear the screen - ready for the stats sub	[AC]		
menu	[SHIFT] [1] (STAT)		

Key	Menu Item	Explanation
5: Reg	1. A	Regression co-efficient of A
	2. B	Regression co-efficient of B
	3. r	Correlation co-efficient r
	4. \hat{x}	Estimated value of x
	5. \hat{y}	Estimated value of y

- Calculate the value of A. •
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- A = 1
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- B = 2
- So the equation is y = 1 + 2x or in the familiar notation: y = 2x + 1

- 2. Find the Quadratic function with x intercepts (-1; 0) and (4, 0) and y intercept (0; 8)
 - Remember in STATS the Quadratic function is given as $(y=A+Bx+Cx^2)$

Solution:	Key Sequence:
Set your calculator to Stats mode –	[MODE] [2:STAT]
Quadratic Regression	$[3](-+CX^2)$
Enter the data into the double variable table	x y
Input <i>x</i> -values first and then <i>y</i> -values.	1 -1 [=] 0 [=]
	2 4 [=] 0 [=]
	3 0 [=] 8 [=]
Use the [REPLAY] arrows to move the	
cursor to the <i>y</i> -column.	
Clear the screen - ready for the stats sub	[AC]
menu	[SHIFT] [1] (STAT)

Key	Menu Item	Explanation	
5: Reg	1. A	Regression co-efficient of A	
	2. B	Regression co-efficient of B	
	3. C	Regression co-efficient of C	
	4. \hat{x}_1	Estimated value of x ₁	
	5. \hat{x}^2	Estimated value of x ₂	
	6. ŷ	Estimated value of y	

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then A = 8
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B = 6
- Now calculate the value of C
- Press: [SHIFT] [1] [5: Reg] [3: C] [=]
- Then C = -2
- Hence the equation is $y = 8 + 6x 2x^2$ or in the familiar format: $y = -2x^2 + 6x + 8$.

3. Find the Quadratic function passing through points (1; 2), (-1; -2) and (2; 7).

Solution:	Key Sequence:		
Set your calculator to Stats mode –	[MODE] [2:STAT]		
Quadratic Regression	$[3](-+CX^2)$		
Enter the data into the double variable table	x y		
Input <i>x</i> -values first and then <i>y</i> -values.	1 -1 [=] -2[=]		
	2 1[=] 2 [=]		
Use the [REPLAY] arrows to move the	3 2 [=] 7 [=]		
cursor to the y-column.			
Clear the screen - ready for the stats sub	[AC]		
menu	[SHIFT] [1] (STAT)		

Key	Menu Item	Explanation
5: Reg	1. A	Regression co-efficient of A
	2. B	Regression co-efficient of B
	3. C	Regression co-efficient of C
	4. \hat{x}_1	Estimated value of x ₁
	5. \hat{x}^2	Estimated value of x ₂
	6. ŷ	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then A = -1
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B = 2
- Now calculate the value of C
- Press: [SHIFT] [1] [5: Reg] [3: C] [=]
- Then C = 1
- Hence the equation is $y = -1 + 2x + x^2$ or in the familiar format: $y = x^2 + 2x 1$.
- 4. Find the equation of the exponential graph* passing though the points (0; 1) and (2; 4).

* The C	ASIO fx-	-82ZA+ wil	l only fi	ind equations	of graphs	of the form $y = A$	$A.B^X$
			2	1	01	2	

Solution:	Key Sequence:
Set your calculator to Stats mode –	[MODE] [2:STAT]
Exponential Regression	$[6] (A.B^X)$
Enter the data into the double variable table	
Input <i>x</i> -values first and then <i>y</i> -values.	1 0 [=] 1[=]
	2 2 [=] 4 [=]
Use the [REPLAY] arrows to move the	
cursor to the <i>y</i> -column.	
Clear the screen - ready for the stats sub	[AC]
menu	[SHIFT] [1] (STAT)

Key	Menu Item	Explanation
5: Reg	1. A	Regression co-efficient of A
	2. B	Regression co-efficient of B
	3. r	Correlation coefficient
	4. \hat{x}	Estimated value of x
	5. ŷ	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then A = 1
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]

- Then B = 2
- Hence the equation is $y = 1.2^x$ or $y = 2^x$
- 5. Find the Quadratic function with turning point (-1; 4) and through point (0; 5).
- We need to identify a third point on the graph. From the turning point we know that the axis of symmetry is x = -1. The point symmetrical to (0; 5) would then be (-2; 5).

Solution:	Key Sequence:	
Set your calculator to Stats mode –	[MODE] [2:STAT]	
Quadratic Regression	$[3](-+CX^2)$	
Enter the data into the double variable table	x y	
Input <i>x</i> -values first and then <i>y</i> -values.	1 -1 [=] 4[=]	
	2 -2[=] 5 [=]	
Use the [REPLAY] arrows to move the	3 0 [=] 5 [=]	
cursor to the <i>y</i> -column.		
Clear the screen - ready for the stats sub	[AC]	
menu	[SHIFT] [1] (STAT)	

Key	Menu Item	Explanation
5: Reg	1. A	Regression co-efficient of A
	2. B	Regression co-efficient of B
	3. C	Regression co-efficient of C
	4. \hat{x}_1	Estimated value of x_1
	5. \hat{x}^2	Estimated value of x ₂
	6. \hat{y}	Estimated value of y

- Calculate the value of A
- Press: [SHIFT] [1] [5: Reg] [1: A] [=]
- Then A = 5
- Now calculate the value of B
- Press: [SHIFT] [1] [5: Reg] [2: B] [=]
- Then B = 2
- Now calculate the value of C
- Press: [SHIFT] [1] [5: Reg] [3: C] [=]
- Then C = 1
- Hence the equation is $y = 5 + 2x + x^2$ or in the familiar format: $y = x^2 + 2x + 5$.