

[MODE] 1. Computational – normal scientific calculations 2. Statistics – data handling & regression

3. Table – graph work & functions

How to CLEAR (Initialise) your calculator: SHIFT 9 3 E AC This returns the mode & setup to the initial default settings & clears the memory.

MODE 1: Computational

How to set your calculator to round off to 2 decimal places

1:MthIO 2:LineÍO 3:De9 4:Rad 5:Gra 6:Fix 7:Sci 8:Norm	SHIFT MODE 6 Now select decimal places 2	Fix 0~9?	
--	--	----------	--

How to clear your calculator from rounding off to 2 decimal places

1:MthIO 2:LineÌO 3:Deg 4:Rad 5:Gra 6:Fix 7:Sci 8:Norm	SHIFT MODE 8 Select 2	Norm 1~2?		
Norm 1 is the default setting and gives answers in scientific notation. e.g. $1 \div 50\ 000 = 2 \ge 10^{-5}$				

Norm 2 is **generally preferred** as answers are only expressed in scientific notation when they are too big to fit on the screen.

e.g. $1 \div 50\ 000 = 0.00002$

PERCENTAGES

A. WRITING A FRACTION AS A PERCENTAGE

Write $\frac{126}{150}$ as a percentage. = 84%	126 🗏 150 🕞 X 100 =
--	---------------------

B. FINDING THE PERCENTAGE OF AN AMOUNT

Find 15% of 1 250. = 187,5

1 5 SHFT (X 1 2 5 0 = S+D

C. PERCENTAGE INCREASE

Increase 2 000 by 15% = 2 300

200	0 + 2 0 0 0	
X 1		

D. PERCENTAGE DECREASE

Decrease 2 000 by 15% = 1 700

2000-2000	

SCIENTIFIC NOTATION

1. CONVERTING FROM SCIENTIFIC NOTATION TO A WHOLE NUMBER OR DECIMAL

Convert to a whole number 3×10^4 =30 000

×10^x

2. CONVERTING TO SCIENTIFIC NOTATION

Convert to scientific notation with four significant digits: 12 673 **1 2 6 7 3 =** $=1,267 \times 10^4$ Set your calculator to SCIENTIFIC NOTATION: SHIFT MODE 7 Select how many significant digits SC i 0~9? 4

HOUR/DEGREE, MINUTE, SECOND CALCULATIONS

A. CONVERTING FROM A DECIMAL TO HOURS, MINUTES & SECONDS

How long will it take to travel a distance of 534km, if your average speed is 90km/h?

B. CONVERTING FROM HOURS, MINUTES & SECONDS TO A DECIMAL

At what speed are you travelling if 150km takes 1 hour 16 minutes and 17 seconds?

MEMORIES (A, B, C, D, E, F, X, Y)

To assign the result of $3 + 5$ to variable A	3 🕂 5 Shift RCL ()
To multiply the contents of variable A by 10	
To recall the contents of variable A	

On the calculator financial maths calculations are done as a continuous calculation. If you use the memory keys you do not have to key in the same numbers repeatedly.

MODE 3: Table

A.GENERATE TABLES TO SKETCH GRAPHS

1. y = 2x + 3

 $-1 \le x \le 3$

Remember: AC returns you to the formula

2. Compare: $y = \sin x$ and $y = \cos x$ for $x \in [0^\circ; 360^\circ]$

B.FINANCIAL MATHS IN TABLE MODE

R1 000 is invested at a compound interest rate of 10% per annum. Calculate the value of the investment after:

- i. 1 year
- ii. 2 years
- iii. 3 years
- iv. 4 years

It is useful to do this in TABLE mode because n is changing.

$$\underline{\text{Given:}}$$

P = 1000

$$i = 10\% = \frac{10}{100} = 0.1$$

 $n = x$
 $A = ?$

 $A = 1000 (1 + 0, 1)^{n}$

MODE 2: Statistics

1. DATA HANDLING

Example: The following data set represents the maximum	Temperature (°C)
temperatures over a 5 day period, determine the:	22
a. Sum of the data set	25
b. Number of elements in the data set	26
c. Arithmetic mean	25
d. Standard deviation	27

Solution:	Key Sequence:
Set your calculator to Stats mode for Single variable data	MODE 2 1
Enter the data into the table	22 25 26 25 27 27
Clear the screen - ready for the Single variable sub menu	
1:Type 2:Data 3:Sum 4:Var 5:MinMax	AC SHIFT 1

Breakdown of Single variable sub menu

Key	Menu Item		Explanation
1: Type	Stats menu		Change statistical calculation type
2: Data			Displays inputted data
3: Sum	1 = 7 - 2	$2 \times 7 \sim$	1. Sum of squares
	1:224	2:48	2. Sum
4: Var			1. Number of samples
	1:n	2:2	2. Mean
	3:0x	4:sx	3. Population standard deviation
			4. Sample standard deviation
5: MinMax	1 = máioX	2 * m a 2 %	1. Minimum value
	1.01103	Zemaxn	2. Maximum value

Solution:	Key Sequence:
a. Sum of the data set $\Sigma \times = 125$	32 =
b. Number of elements in the data set $\mathbf{n} = 5$	SHIFT 1 4 1 =
c. Arithmetic mean $\overline{x} = 25$	Shift 1 4 2 =
d. Standard Deviation $\mathbf{\vec{0}} \times = 1,673320053$	SHIFT 1 4 3 =

2. LINEAR REGRESSION

Example: Let's investigate whether there is a linear relationship between temperature and atmospheric pressure. The data is shown in the table below:

x Temperature (°C)	y Atmospheric pressure (kPa)
10	100,3
15	100,5
20	101,0
25	101,1
30	101,4

The pressure depends on the temperature so; Temperature is the *x* variable and Pressure the *y* variable.

Solution:	Key Sequence:	
Set your calculator to Stat	MODE 2 2	
Enter the data into the tab	le:	
Input <i>x</i> -values		
Use the [REPLAY] arrow	s to move the cursor to the v-	
column.		
Input y-values		
0747	(14) F3	
31 201 1011, 61 1 4444 1		
Clear the screen - ready fo		
1. Tupo	2. Doto	
3:SUM	4:Var	AC SHIFT 1
5:Re9	6:MinMax	

Breakdown of **Regression sub menu**

Key	Menu Item		Explanation	
5: Reg			1. Regression co-efficient of A	
	1:A 3:r 5:9	2:B	2. Regression co-efficient of B	
		4:2	3. Correlation co-efficient r	
			4. Estimated value of x	
			5. Estimated value of y	

Solution:	Key Sequence:
Calculate the Correlation co-efficient $\Gamma = 0.9826073689$	53 =

r is very close to +1, telling us there is a **strong positive linear correlation** between temperature and atmospheric pressure.

We can now work out the values of A and B in the equation of the regression line (line of best fit): y = A + Bx

Calculate the value of \mathbf{A} $\mathbf{\bar{H}} = 99,74$	SHFT 1 5 1 =			
Calculate the value of B = $0,056$	Shift 1 5 2 =			
y = 99,74 + 0,056x				

Once you know the equation of the regression line you can then make projections about the atmospheric pressure for other temperatures or the temperature for other pressures.

PERMUTATIONS & COMBINATIONS

When we want to find the number of possible ways of picking *r* objects from a group of *n*:

Example: When playing the lotto, a player chooses 6 numbers from 49. It costs R3,50 to play a set of numbers. How much would it cost to buy every possible combination of 6 numbers, to ensure obtaining the winning combination?

<u>Combination</u>	<u>ns</u> : 49 Shift 🕂 6	= 13 983 816
Cost:	Ans 🗙 3 • 5 =	R48 943 356,00

SELECTING RANDOM SAMPLES

Let **the calculator** choose a random sample of Integers between 1 and 49, to play the lotto:

NOTE every calculator will give a different string of numbers (Integers are repeated)

Calculators play a vital role in the classroom: not by *substituting* Mathematics, but by *supplementing* our subject. It's conventional Mathematics by new methods.