CASIO
 FINANCIAL CONSULTANT FC－100／200V

Financial Walk－through

Page	Example
1	Set Up
3	Simple Interest
4	Compound Interest
6	Annuity
8	Annuity
10	Final Payment
12	Principal \＆Interest Portions of a Payment
14	Cash Flow

Switch the calculator on	ON
Show the setup screen	
	CASIO FINANCIAL CONSULTANT
For our purposes the calculator must display	PEwintaran口．ヨた Mode：365 －Gli：

Example 1 - Simple Interest

Calculate the future value of R1 000 invested for 4 years and 223 days at 12% pa simple interest.

1. Clear the calculator's memory.

2. Enter the simple interest mode.

SMPL

3. Enter the investment period measured in days.

© $4 \times 3 \times 6 \pm 2 \pm 2$ EXE

4. Enter the interest rate.

102 EXE

5. Enter the value for PV.

Note that money paid out must be entered as a negative number.

$$
(-) \boxed{0} 0 \boxed{0} \text { EXE }
$$

6. Calculate the amount of interest earned on the investment.

SOLVE

Example 2 - Compound Interest

Calculate the future value of R1 000 invested for 4 years at 12% pa compounded monthly.

T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$
PV				FV
1000				

There are two different ways to use the calculator to calculate FV. One way uses the effective monthly interest rate \& the other way uses the nominal interest rate.

Consider first the way we would use the effective monthly interest rate to calculate FV.

$$
i_{12}=\frac{12}{12} \% p m=1 \% p m
$$

1. Clear the calculator's memory.

2. Enter the compound interest mode.

CMPD
3. Enter the investment period.

Because we are using the effective monthly interest rate the investment period must be expressed in terms of number of months.

$\odot 4 x-1$ EXE

4. Enter the effective interest rate.

5. Enter the value for PV.

$$
(-) \sqrt{1} 000 \text { EXE }
$$

6. Calculate FV.

Now consider the way we would use the nominal interest rate to calculate FV.

$$
j=12 \% \text { pa compounded monthly }
$$

7. Clear the financial data used in the previous calculation.

8. Enter the new investment period.

Because we are using the nominal interest rate the investment period must be expressed in terms of number of years.

9. Enter the nominal interest rate.

12 EXE

10. Enter the value for PV.

$$
(-) \sqrt{1} 0000 \text { EXE }
$$

Therefore, the future value (rounded to the nearest cent) of R1 000, invested for 4 years at the nominal interest rate $j=12 \%$ pa compounded monthly is R1 612,23

Example 3 - Annuity

R1 000 is invested each year at $15 \% p a$ compounded monthly for 4 years.

T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$
	PMT	PMT	PMT	PMT
PV	1000	1000	1000	1000
				FV

This is an example of a complex annuity because the payments are made annually and the effective interest rate is $i_{12}=1,25 \% \mathrm{pm}$. Hence, to be able to calculate FV and PV, we must first calculate the effective interest rate i_{1} from the equation

$$
i_{1}=(1,0125)^{12}-1
$$

As in the previous example there are two ways to calculate FV and PV using the calculator.

1. Clear the calculator's memory.

2. Enter the compound interest mode.

CMPD

This example involves payments.
Therefore, the calculator must display Set:End
3. Enter the number of payments.

Therefore, the present value of this complex annuity (rounded to the nearest cent) is $\mathbf{R 2} \mathbf{7 9 3}, 97$
7. Calculate FV.

Delete the value for $P V$ first DEL EXE

PMTE-1999
的

Therefore, the future value of this complex annuity (rounded to the nearest cent) is R5072,05
Now consider the way we would use the nominal interest rate to calculate FV and PV.

$$
j=15 \% \text { pa compounded monthly }
$$

8. Clear the financial data used in the previous calculation.

9. Enter the number of payments.
10.Enter the nominal interest rate.

$$
15 \text { EXE }
$$

11.Enter the value of the payments.

$$
(-) \pi 0000 \text { EXE }
$$

12.Now we need to indicate to the calculator that we are using a nominal interest rate and compounding occurs 12 times a year.

$\odot \odot 1$ EXE

The calculator will take the values $1 \%=15, C / Y=12, P / Y=1$ and it will calculate the effective interest rate i_{1} internally.
13. Calculate PV and FV .

Delete the value for $P V$ DEL EXE

Example 4 - Annuity

Monthly deposits of R300 are made into an account for 3 years. What is the future value of the annuity 6 months after the last deposit has been made if the interest rate is $16 \% p a$ compounded quarterly?

T_{1}	\ldots	$\mathrm{~T}_{36}$	\ldots	$\mathrm{~T}_{42}$
PMT		PMT		
300		300		
		FV_{1}		FV_{2}

This is a complex annuity because the payments are monthly and the effective interest rate that is given is $i_{4}=4 \% p q$. Hence, to be able to calculate FV_{1} and FV_{2} the effective interest rate i_{12} must first be calculated from the equation.

$$
i_{12}=(1.04)^{1 / 3}-1
$$

1. Clear the calculator's memory.

2. Enter the compound interest mode.

CMPD

This example involves payments.
Therefore, the calculator must display Set:End
3. Enter the number of payments.

4. Enter the nominal interest rate.

16 EXE

5. Enter the value of the equal payments.

$$
\odot(-) \pi 00 \text { ExE }
$$

6. We need to indicate to the calculator that 12 payments are being made every year and compounding occurs 4 times every year.

12 EXE 4 EXE

7. Calculate FV_{1}.

The value of FV_{1} is $\mathbf{R 1 3} 701,9631$...
8. Store this value for FV_{1} because we will need it as a present value in the next calculation.

9. Calculate FV_{2}.

Delete the value of FV. DEL EXE

Recall the value of $F V_{1}$ from the calculator's

CNVR

memory.

We are not making any more payments so delete the value for PMT. DEL EXE

\odot SOLVE

Therefore, the future value of the annuity (rounded to the nearest cent) $\mathbf{6}$ months after the last deposit has been made is $\mathbf{R 1 4} \mathbf{8 2 0 , 0 4}$

It is important to remember that if 1% is the nominal interest rate, then whatever value of C / Y and P / Y is entered, the calculator will always calculate the effective interest rate corresponding to the payment period.
For example,

- if there are four payments a year, then $P / Y=4$ and the calculator would calculate i_{4},
- if there are two payments a year, then $\mathrm{P} / \mathrm{Y}=2$ and the calculator would calculate i_{2}, etc.

However, if $I \%$ is the effective interest rate, then $C / Y=1$ and $P / Y=1$ and n must be expressed in terms of the appropriate investment period.
For example,

- if $i_{4}=2,5 \% p q$, then $I \%=2.5$ and n must be expressed in terms of quarters,
- if $i_{12}=3 \% \mathrm{pm}$, then $\mathrm{I} \%=3$ and n must be expressed in terms of months, etc.

Example 5 - Final Payment

A loan of R12 000 is to be repaid by n monthly repayments of R500 and a final monthly repayment of F that is less than R 500 . The first monthly repayment takes place one month after the granting of the loan. Find n and F if interest is calculated at $18 \% \mathrm{pa}$ compounded monthly.

T_{0}	$\mathrm{~T}_{1}$	\ldots	$\mathrm{~T}_{\mathrm{n}}$	$\mathrm{T}_{\mathrm{n}+1}$
PV	PMT		PMT	PMT
12000	500		500	F

The effective interest rate in this example is

$$
i_{12}=\frac{18}{12} \% p m=1,5 \% p m
$$

1. Clear the calculator's memory.

2. Enter the compound interest mode.

CMPD

This example involves payments.

Therefore, the calculator must display Set:End
3. Enter effective interest rate.

4. Enter the value of the loan.

5. Enter the value of the equal payments.

$$
(-) 5000 \text { EXE }
$$

6. Calculate n.

$\boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes}$ SOLVE

Therefore, 29 equal payments of $\mathbf{R 5 0 0}$ must be made and the final payment F will be payment number 30.
7. Calculate F.

Delete the value of n and replace it with $\mathrm{n}=29$.

- Therefore, the balance outstanding immediately after the 29th payment is R480,415727...
- The value of F is this balance outstanding at T_{29} carried forward one more month.
- Store the value of the balance outstanding because we will need it to calculate F.

$$
\text { SHIFT } \mathbb{R C L} \odot \odot \text { EXE EXE }
$$

8. Calculate the value of F.

Therefore, the value of the final payment \boldsymbol{F} (rounded to the nearest cent) is $\mathbf{R 4 8 7 , 6 2}$
Note that there are at least two other ways to calculate the value of the final payment F. Furthermore, this example can also be done using the nominal interest rate in which case we must enter $\mathrm{I} \%=18, \mathrm{P} / \mathrm{Y}=12$, and $\mathrm{C} / \mathrm{Y}=12$.

Example 6 - Principal and Interest Portions of a Payment

A loan of R5 000 is to be repaid by 4 regular annual payments at 24% pa.

- What are the principal and interest portions of the $2^{\text {nd }}$ payment?
- What is the balance outstanding immediately after the $2^{\text {nd }}$ payment?
- What is the total interest paid immediately after the $4^{\text {th }}$ payment?

T_{0}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	$\mathrm{~T}_{3}$	$\mathrm{~T}_{4}$
PV	PMT	PMT	PMT	PMT
5000				

1. Clear the calculator's memory.

2. Calculate the value of the payments.

CMPD

This example involves payments.

Therefore, the calculator must display Set:End
3. Enter the number of payments.

4. Enter the effective interest rate.

$$
2 \text { EXE }
$$

5. Enter the value of the loan.

$$
5 \longdiv { 0 } 0 0 0 \text { EXE }
$$

6. Calculate the value of the payments.

Therefore, the value of the annual payments (rounded to the nearest cent) is $\mathbf{R} 2 \mathbf{0 7 9 , 6 3}$
7. Enter the amortization mode.
8. Calculate the principal and interest portions of the $2^{\text {nd }}$ payment and the balance outstanding immediately after the $2^{\text {nd }}$ payment.

SOLVE

$I N T=-96 ; 86969$

Therefore, the interest portion of the $2^{\text {nd }}$ payment (rounded to the nearest cent) is R988,89

SOLVE

Therefore, the principal portion of the $2^{\text {nd }}$ payment (rounded to the nearest cent) is R1 090,74

SOLVE

Therefore, the balance outstanding immediately after the $2^{\text {nd }}$ payment (rounded to the nearest cent) is $\mathbf{R 3} \mathbf{0 2 9 , 6 3}$
9. Calculate the total interest paid immediately after the $4^{\text {th }}$ payment.
ESC
$\boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes}$

1 EXE 4 EXE

SOLVE

ปIN=-5318.510176

The total interest paid immediately after the $4^{\text {th }}$ payment (rounded to the nearest cent) is $\mathbf{R 3} 318,51$

Example 7 - Cash Flow

An investor has the opportunity to invest R10 000 with a cash flow over the next six years given in the table below.

Years	1	2	3	4	5	6
Cash flow	R2 000	R1 900	R2 800	R3 400	R4 000	R4 900

The investor requires a minimum return of $9 \% p a$ because this can be obtained on a six year bank deposit.

Use the calculator to find the Net Present Value (NPV) and the Internal Rate of Return (IRR)

1. Clear the calculator's memory.

EXE EXE AC

3. Enter effective interest rate.

9 EXE
4. Enter the cash flow.

EXE

$\Theta 100000$ ExE

20000 Exe 1000 ExE
2800 远 300 远
4000 ExE 4000 ExE
ESC
5. Calculate the $N P V$.

SOLVE

$\mathrm{WP} W=3526.249281$

IRR: $=16.26 .51682$

Notice that the calculator has replaced the value
SOLVE
of $\mathrm{I} \%=9$ with $\mathrm{I} \%=18.26531682$
To switch the calculator off:

SHIFT AC

